Meaning of Polyakov Loop in QCD: confinement, deconfinement, and partial deconfinement

Masanori Hanada

Aug 2022 @Stavanger

Based on MH, 2102.08982[hep-th] (PRD) MH, Shimada, Wintergerst, 2001.10459[hep-th] (JHEP) + several more

- M. Hanada and J. Maltz, "A proposal of the gauge theory description of the small Schwarzschild black hole in AdS₅×S⁵," JHEP 02 (2017) 012, arXiv:1608.03276 [hep-th].
- [2] M. Hanada, G. Ishiki, and H. Watanabe, "Partial Deconfinement," JHEP 03 (2019) 145, arXiv:1812.05494 [hep-th]. [Erratum: JHEP 10, 029 (2019)].
- [3] M. Hanada, A. Jevicki, C. Peng, and N. Wintergerst, "Anatomy of Deconfinement," JHEP 12 (2019) 167, arXiv:1909.09118 [hep-th].
- [4] M. Hanada and B. Robinson, "Partial-Symmetry-Breaking Phase Transitions," *Phys. Rev. D* 102 no. 9, (2020) 096013, arXiv:1911.06223 [hep-th].
- [5] M. Hanada, H. Shimada, and N. Wintergerst, "Color confinement and Bose-Einstein condensation," JHEP 08 (2021) 039, arXiv:2001.10459 [hep-th].
- [6] H. Watanabe, G. Bergner, N. Bodendorfer, S. Shiba Funai, M. Hanada, E. Rinaldi, A. Schäfer, and P. Vranas, "Partial deconfinement at strong coupling on the lattice," *JHEP* 02 (2021) 004, arXiv:2005.04103 [hep-th].
- [7] M. Hanada, "Bulk geometry in gauge/gravity duality and color degrees of freedom," *Phys. Rev. D* 103 no. 10, (2021) 106007, arXiv:2102.08982 [hep-th].
- [8] M. Hanada, J. Holden, M. Knaggs, and A. O'Bannon, "Global symmetries and partial confinement," JHEP 03 (2022) 118, arXiv:2112.11398 [hep-th].
- [9] Gautam, M. Hanada, Holden, Rinaldi, "Linear confinement in the partially-deconfined phase", to appear in hep-th.

Three phases? Intermediate phase between confined and

deconfined phase?

- Meaning of Polyakov loop (nothing to do with center symmetry!)
- Partial confinement, partial deconfinement
- Large-N confinement ~ BEC

Confinement ~ superfluid

Deconfinement ~ normal fluid

Confinement phase: E, S ~ N⁰

• Deconfinement phase: E, S ~ N²

This 'kinematical' characterization _(Witten 1998) works even at weak coupling and/or small volume. (Sundborg 1998; Aharony et al 2003)

We consider the large-N limit.

Three patterns of the phase diagram in gauge theory (Aharony et al, 2003)

Three patterns of the phase diagram in gauge theory (Aharony et al, 2003)

Physical meaning?

Partial confinement (MH-Maltz, 2016)

MH-Maltz, 2016 (JHEP) MH-Ishiki-Watanabe, 2018 (JHEP) MH-Shimada-Wintergerst, 2020 (JHEP)

no symmetry

The mechanism is the same as Bose-Einstein condensation

(MH-Shimada-Wintergerst, 2020)

Historically the first example of non-abelian gauge theory

Bose

Einstein

N indistinguishable bosons

Summation over singlet states
$$Z(T) = \text{Tr}_{\mathcal{H}_{inv}}(e^{-\hat{H}/T})$$

Summation over all states & projection to singlet states

$$Z(T) = \frac{1}{\operatorname{vol}(G)} \int_G dg \operatorname{Tr}_{\mathcal{H}_{ext}}(\hat{g}e^{-\hat{H}/T})$$

 $G = SU(N) + adjoint fields \rightarrow Yang-Mills, matrix model$

 $G = S_N + fundamental fields \rightarrow N$ indistinguishable bosons

Summation over singlet states
$$Z(T) = \text{Tr}_{\mathcal{H}_{inv}}(e^{-\hat{H}/T})$$

Summation over all states & projection to singlet states

$$Z(T) = \frac{1}{\operatorname{vol}(G)} \int_{G} dg \operatorname{Tr}_{\mathcal{H}_{ext}} (\hat{g} e^{-\hat{H}/T})$$

Polyakov loop

 $G = SU(N) + adjoint fields \rightarrow Yang-Mills, matrix model$

 $G = S_N + fundamental fields \rightarrow N$ indistinguishable bosons

N bosons in 3d harmonic trap

$$\hat{H} = \sum_{i=1}^{N} \left(\frac{\hat{\vec{p}}_{i}^{2}}{2m} + \frac{m\omega^{2}}{2} \hat{\vec{x}}_{i}^{2} \right) \qquad \hat{\vec{x}}_{i} = (\hat{x}_{i}, \hat{y}_{i}, \hat{z}_{i}) \\ \hat{\vec{p}}_{i} = (\hat{p}_{x,i}, \hat{p}_{y,i}, \hat{p}_{z,i})$$

Fock states
$$|\vec{n}_1, \vec{n}_2, \cdots, \vec{n}_N\rangle \equiv \prod_{i=1}^3 \frac{\hat{a}_{i1}^{\dagger n_{i1}}}{\sqrt{n_{i1}!}} \frac{\hat{a}_{i2}^{\dagger n_{i2}}}{\sqrt{n_{i2}!}} \cdots \frac{\hat{a}_{iN}^{\dagger n_{iN}}}{\sqrt{n_{iN}!}} |0\rangle$$

$$Z(T) = \frac{1}{N!} \sum_{\sigma \in \mathcal{S}_N} \sum_{\vec{n}_1, \cdots, \vec{n}_N} \langle \vec{n}_1, \cdots, \vec{n}_N | \hat{\sigma} e^{-\hat{H}/T} | \vec{n}_1, \cdots, \vec{n}_N \rangle$$
$$= \frac{1}{N!} \sum_{\vec{n}_1, \cdots, \vec{n}_N} e^{-(E_{\vec{n}_1} + \cdots + E_{\vec{n}_N})/T} \left(\sum_{\sigma \in \mathcal{S}_N} \langle \vec{n}_1, \cdots, \vec{n}_N | \vec{n}_{\sigma(1)}, \cdots, \vec{n}_{\sigma(N)} \rangle \right)$$
$$measures the amount of redundancy$$

Sanjusangendo, Kyoto

京都 三十三間堂

N=1001

(Einstein visited Kyoto in 1922)

$$Z(T) = \frac{1}{N!} \sum_{\sigma \in \mathcal{S}_N} \sum_{\vec{n}_1, \cdots, \vec{n}_N} \langle \vec{n}_1, \cdots, \vec{n}_N | \hat{\sigma} e^{-\hat{H}/T} | \vec{n}_1, \cdots, \vec{n}_N \rangle$$
$$= \frac{1}{N!} \sum_{\vec{n}_1, \cdots, \vec{n}_N} e^{-(E_{\vec{n}_1} + \cdots + E_{\vec{n}_N})/T} \left(\sum_{\sigma \in \mathcal{S}_N} \langle \vec{n}_1, \cdots, \vec{n}_N | \vec{n}_{\sigma(1)}, \cdots, \vec{n}_{\sigma(N)} \rangle \right)$$

$$|ec{0},ec{0},\cdots,ec{0}
angle$$
 N!

$$ert ec{n}_1, \cdots, ec{n}_N
angle \quad 1$$

(all of them are different)
 $ec{n}_1, \cdots, ec{n}_M, ec{0}, \cdots, ec{0}
angle \quad (N-M)!$

This enhancement triggers BEC.

Einstein, 1924

$$Z(T) = \frac{1}{N!} \sum_{\sigma \in S_N} \sum_{\vec{n}_1, \cdots, \vec{n}_N} \langle \vec{n}_1, \cdots, \vec{n}_N | \hat{\sigma} e^{-\hat{H}/T} | \vec{n}_1, \cdots, \vec{n}_N \rangle$$
$$= \frac{1}{N!} \sum_{\vec{n}_1, \cdots, \vec{n}_N} e^{-(E_{\vec{n}_1} + \cdots + E_{\vec{n}_N})/T} \left(\sum_{\sigma \in S_N} \langle \vec{n}_1, \cdots, \vec{n}_N | \vec{n}_{\sigma(1)}, \cdots, \vec{n}_{\sigma(N)} \rangle \right)$$

$$\begin{split} |\vec{0}, \vec{0}, \cdots, \vec{0}\rangle & N! \\ G_{|\Phi\rangle} &= \{\hat{\sigma} \in G = \mathcal{S}_N \text{ s.t. } \hat{\sigma} |\Phi\rangle = |\Phi\rangle\} \\ & \quad \mathbf{Vol}G_{|\Phi\rangle} \\ |\vec{n}_1, \cdots, \vec{n}_M, \vec{0}, \cdots, \vec{0}\rangle \quad (N-M)! \\ \end{split}$$
This enhancement triggers BEC.

Einstein, 1924

Partially-BEC state

$$|\vec{n}_1,\cdots,\vec{n}_M,\vec{0},\cdots,\vec{0}
angle \quad (N-M)!$$

Partially-confined state

(MH-Maltz, 2016; Berenstein, 2018; MH-Ishiki-Watanabe, 2018; MH-Jevicki-Peng-Wintergerst, 2019; Watanabe et al, 2020)

$$\operatorname{Vol}(\operatorname{SU}(N-M)) \sim e^{(N-M)^2}$$

deconfined sector = extended bound state of strings and D-brane = black hole

no symmetry

Larger enhancement factor (volume of SU(N-M))

MH, Shimada, Wintergerst, 2001.10459[hep-th] (JHEP) MH, 2102.08982[hep-th] (PRD)

$$Z(T) = \frac{1}{\text{vol}G} \int_{G} dg \text{Tr}_{\mathcal{H}_{\text{ext}}} \left(\hat{g}e^{-\hat{H}/T}\right)$$
$$\sim \frac{1}{\text{vol}G} e^{-E_{\text{typical}}/T} \int_{G} dg \langle \text{typical} | \hat{g} | \text{typical} \rangle$$
Polyakov loop

Typical \hat{g} 's which leave $|\text{typical}\rangle$ unchanged dominate the phase distribution

MH-Maltz, 2016 (JHEP) MH-Ishiki-Watanabe, 2018 (JHEP) MH-Shimada-Wintergerst, 2020 (JHEP)

QCD on S³ at weak coupling

MH-Robinson, 1911.06223

 M_{c}

Re-interpretation of Schnitzer, hep-th/0402219

Flux tube in pure YM

Gautam-MH-Holden-Rinaldi, 2022

Pol. = diag
$$(e^{i\theta_1}, \cdots, e^{i\theta_M}, e^{i\theta_{M+1}}, \cdots, e^{i\theta_N})$$

Deconfined Polyakov loop Confined Polyakov loop

- Strong coupling limit → Analytic prediction (Assuming the formation of flux tube)
 - Check it numerically.
 - Use large-N volume reduction technique

Flux tube in pure YM

Polyakov loop correlators

Gautam-MH-Holden-Rinaldi, 2022

String-coupling Lattice Gauge Theory

Chiral symmetry

MH-Holden-Knaggs-O'Bannon, 2112.11398

Summary & Outlook

- Partial (de)confinement @ large N
 - Confined sector + deconfined sector
 - Only gauge symmetry is needed.
- Generic feature of large-N gauge theory
- Triggers chiral symmetry breaking (also CP breaking $@\theta=\pi$)
- Finite-N?

"Partial phase = center breaking, chiral breaking phase" (in some concrete examples with global symmetries)