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Motivation

Wish to understand confinement

conformal symmetry must be broken

Non-perturbative: defied analytic attempts. Numerical
progress.

Use non-AdS/non-CFT

Tools at disposal:

Wilson etc loops
Entanglement entropy
C-functions

Holography is never going to solve confinement, but

we may learn valuable lessons

Holography score card by comparison to YM simulations

We need to gain understanding of entanglement entropy in
gauge theories ↔ this is our first goal
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Entanglement is sensitive to confinement transition

Entanglement roughly probes confinement
[Nishioka-Takayanagi hep-th/0611035,Klebanov-Kutasov-Murugan

0709.2140,NJ-Subils 2010.09392]

Effective degrees of freedom:

deconfining phase: colorful (e.g. gluons) ∼ O(N2
c )

confining phase: color singlets (e.g. glueballs) ∼ O(1)

Derived quantities of EE capture the number of dofs

Key idea: C-function constructed from EE acts as an order
parameter for deconfinement at Nc ∼ ∞
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Entanglement entropy itself motivates

Quantum information theory (related entanglement measures)

Universal order parameter for quantum phase transitions
[Kitaev-Preskill hep-th/0510092]

“Measured” in cold atom systems
[Islam et al. 1509.01160]

Nc �∞: Computable from the lattice
[Buividovich-Polikarpov 0802.4247, . . . ]

Nc =∞: Holography

simple prescription via minimal surfaces
[Ryu-Takayanagi hep-th/0603001,Hubeny-Rangamani-Takayanagi

0705.0016]

relationship to black hole thermo → get thermo for QFT
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Definition of EE

Take (scalar) QFT in Rd+1 in vacuum state |0〉 and split

A = Rd × I` , B = Rd × (R− I`)

Quantum entanglement (von Neumann) entropy

SA = −TrρA log ρA , reduced density matrix ρA = TrB|0〉〈0|
EE for region A is entropy seen by an observer unable to
access dofs in B
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Holographic EE and qq̄ potential

Consider SU(Nc ∼ ∞) in 4d and 3d

 rough duals from stacks of D3- and D2-branes

Compute potentials for quarks separated by L and
entanglement entropies for slabs of width ` using holography.

[Rey-Yee hep-th/9803001,Maldacena hep-th/9803002,Ryu-Takayanagi

hep-th/0603001]

Holographic results for 4d SYM

V (L) ∝ 1/L

SRT ∝ 1/`2

Holographic results for 3d SYM

V (L) ∝ 1/L2/3

SRT ∝ 1/`4/3
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Existing results in the literature

EE for slabs from the lattice in

Relation of EE to free energy / path integral
[Calabrese-Cardy’04&’05]

Prescription for free energy measurements
[Fodor’07,Endrödi-Fodor-Katz-Szabo’07]

Pure glue SU(2) in 4d
[Buividovich-Polikarpov’08]

Pure glue SU(3) in 4d
[Nakagawa-Nakamura-Motoki-Zakharov’09,Itou-Nagata-Nakagawa-Nakamura-

Zakharov’11&’15]

Pure glue SU(2,3,4) in 4d
[Rabenstein-Bodendorfer-Buividovich-Schäfer’18]

Our work, pure glue SU(Nc)

in 4d for Nc = 3 and 5 at T = 0

in 3d for Nc = 2 (upto Nc = 7 running) at T & Tc
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SU(Nc = 3), 4d

Compares well with previous results in the literature
[here shown Nakagawa-Nakamura-Motoki-Zakharov 1104.1011]

Our statistical errors are ∼invisible to eye (black markers).
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→ a=0.090(2)
→ x0=0.077(2)
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SU(Nc = 3), 4d

Comparing the C-function

vs. holography SA = N2
c
ε2
− N2

c
`2

+ . . .
[Ryu-Takayanagi hep-th/0605073]
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SU(Nc = 2), 3d

New results for SU(Nc) in 3d at non-zero temperature
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fit: y = a (x-x0)-7/3+b
→ a=0.006(4)
→ b=23.58(7)
→ x0=0.039(10)

→ a=0.010(2)
→ b=11.85(8)
→ x0=0.033(3)

→ a=0.013(2)
→ b=6.85(8)

→ x0=0.029(3)

→ a=0.013(2)
→ b=4.39(9)

→ x0=0.029(3)

data:
V=6⨯962, β=48.

V=8⨯962, β=48.

V=10⨯962, β=48.

V=12⨯962, β=48.

We confirm predictions from D2-brane background
at UV (small `) dS/d` ∼ `−7/3

at IR (large `) dS/d` ∼ const. = SBH ∝ T 7/3
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Bulk reconstruction

This is applied AdS/CFT in reverse

Idea: take boundary measurements and attempt to “guess”
what is bulk

Need either lattice simulations or experimental measurements

they are noisy

⇒ one cannot find precise dual geometry

How to deal with inherently noisy data?
[NJ-Pönni 2007.00010]
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Bulk reconstruction from EE

Make as little assumptions on bulk as possible: use RT
can only reconstruct some components of the bulk metric

Can be shown, for a given metric that:

dSRT
d`

= function(r∗) , r∗ = tip of RT surface

Use Hamiltonian Monte Carlo to reconstruct the metric (and
errors!) {(
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Bulk reconstruction from EE

Bulk metric (posteriors ai ,Newton’s constant) reconstructed
from 3d lattice data
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confidence intervals!

static qq̄ potential using
D2-brane Ansatz for the
dilaton to switch frames
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Quark-anti-quark potentials

We also tested D2-background further by computing the qq̄
potential.
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If ReV ∼ L−10/3 then ImV ∼ 1/L

Can test following the method
[Burnier-Kaczmarek-Rothkopf 1410.2546]
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Summary

Lattice data for EE or Wilson loops can be generated Nc �∞
This data can be used to reconstruct the dual geometry

Allows new predictions in same QFT w/ confidence intervals

New era has begun

Precision holography !

Thank you!
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