Phase Transition and Gravitational Wave of Strongly Dark Sectors with Various Representations

Zhi-Wei Wang

Lund University, Sweden

August 2nd, 2022

XVth "Quark Confinement and the Hadron Spectrum", University of Stavanger August 1st - 6th, 2022

Motivations and what we do

- (Dark) composite dynamics: non perturbative physics, dynamical symmetry breaking, UV completion, naturalness
- (Dark) composite dynamics face challenges to be explored both theoretically and via experiments and thus any extra test is important
- We unify first principle lattice simulations, well-established EFT model and gravitational wave astronomy to constrain the dark sector

A Composite Landscape

- Pure gluons (Yang-Mills theories)⇒ confinement-deconfinement phase transition
- Gluons + Fermions
 - Fermions in fundamental representation ⇒ chiral phase transition
 - Fermions in adjoint rep. ⇒ confinement & chiral phase transition
 - \bullet Fermions in 2-index symmetric rep. \Rightarrow confinement & chiral phase transition
- Gluons + Fermions + Scalars (not explored yet)

3/39

How to describe the strongly coupled sector?

Pure gluons

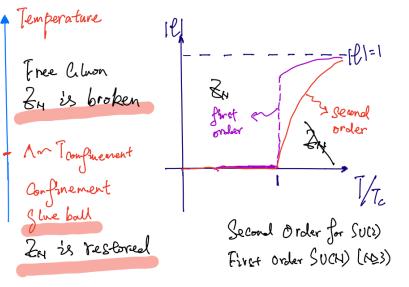
- Polyakov loop model (Huang, Reichert, Sannino and Z-WW, PRD 104 (2021) 035005;
 Kang, Zhu, Matsuzaki, JHEP 09 (2021) 060)
- Matrix Model (Halverson, Long, Maiti, Nelson, Salinas, JHEP 05 (2021) 154)
- Holographic QCD model (Ares, Henriksson, Hindmarsh, Hoyos, Jokela, PRD 105 (2022) 066020

Gluons + Fermions

- Polyakov loop improved Nambu-Jona-Lasinio model (Reichert, Sannino, Z-WW and Zhang, JHEP 01 (2022) 003; Helmboldt, Kubo, Woude, PRD 100 (2019) 055025)
- linear sigma model (Helmboldt, Kubo, Woude, PRD 100 (2019) 055025)
- Polyakov Quark Meson model (Schaefer, Pawlowski, Wambach, PRD 76 (2007) 074023)

4/39

Summary of Pure Gluon Facts (see more details in Manuel's talk on Aug.1st)



Include Fermions

(K. Fukushima, PLB **591** (2004) 277; Ratti, Thaler Weise, PRD **73** (2006) 014019) Reichert, Sannino, Z-WW and Zhang, JHEP **01** (2022) 003, arXiv:2109.11552.

- The Polyakov-loop-Nambu-Jona-Lasinio (PNJL) model is used to describe phase-transition dynamics in dark gauge-fermion sectors
- The finite-temperature grand potential of the PNJL models can be generically written as

$$V_{\rm PNJL} = V_{\rm PLM}[\ell, \ell^*] + V_{\rm cond} \left[\langle \bar{\psi}\psi \rangle \right] + V_{\rm zero} \left[\langle \bar{\psi}\psi \rangle \right] + V_{\rm medium} \left[\langle \bar{\psi}\psi \rangle, \ell, \ell^* \right]$$

- ullet $V_{\mathrm{PLM}}[\ell,\ell^*]$ is the Polyakov loop model potential
- ullet $V_{
 m cond}ig[\langlear\psi\psi
 angleig]$ represents the condensate energy
- ullet $V_{
 m zero}ig[\langlear\psi\psi
 angleig]$ denotes the fermion zero-point energy
- The medium potential $V_{\mathrm{medium}}\left[\langle\bar{\psi}\psi\rangle,\ell,\ell^*\right]$ encodes the interactions between the chiral and gauge sector which arises from an integration over the quark fields coupled to a background gauge field

Effective Potential of the Polyakov Loop Model

• The simplest effective potential preserving the Z_N symmetry in the polynomial form is given by (Pisarski, PRD 62 (2000) 111501)

$$V_{\text{PLM}}^{(\text{poly})} = T^4 \left(-\frac{b_2(T)}{2} |\ell|^2 + b_4 |\ell|^4 + \dots - b_3 (\ell^N + \ell^{*N}) \right)$$
where $b_2(T) = a_0 + a_1 \left(\frac{T_0}{T} \right) + a_2 \left(\frac{T_0}{T} \right)^2 + a_3 \left(\frac{T_0}{T} \right)^3 + a_4 \left(\frac{T_0}{T} \right)^4$

" \cdots " represent any required lower dimension operator than ℓ^N

ullet For the SU(3) case, there is also an alternative logarithmic form

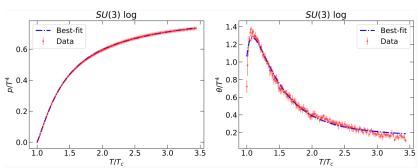
$$V_{\text{PLM}}^{(3\log)} = T^4 \left(-\frac{a(T)}{2} |\ell|^2 + b(T) \ln(1 - 6|\ell|^2 + 4(\ell^{*3} + \ell^3) - 3|\ell|^4) \right)$$
$$a(T) = a_0 + a_1 \left(\frac{T_0}{T} \right) + a_2 \left(\frac{T_0}{T} \right)^2 + a_3 \left(\frac{T_0}{T} \right)^3, \quad b(T) = b_3 \left(\frac{T_0}{T} \right)^3$$

• The $a_i,\,b_i$ coefficients in $V_{\rm PLM}^{({\rm poly})}$ and $V_{\rm PLM}^{(3\log)}$ are determined by fitting the lattice results

Fitting the Coefficients Using the Lattice Results

(Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005

Fitted to lattice data of pressure and the trace of energy momentum tensor.



Fitting the Coefficients Using the Lattice Results

(Huang, Reichert, Sannino and Z-WW, PRD 104 (2021) 035005

Table: The parameters for the best-fit points.

N	3	3 log	4	5	6	8
a_0	3.72	4.26	9.51	14.3	16.6	28.7
a_1	-5.73	-6.53	-8.79	-14.2	-47.4	-69.8
a_2	8.49	22.8	10.1	6.40	108	134
a_3	-9.29	-4.10	-12.2	1.74	-147	-180
a_4	0.27		0.489	-10.1	51.9	56.1
b_3	2.40	-1.77		-5.61		
b_4	4.53		-2.46	-10.5	-54.8	-90.5
b_6			3.23		97.3	157
b_8					-43.5	-68.9

The PNJL model Lagrangian (Fukushima, Skokov, PPNP 96 (2017) 154)

The PNJL Lagrangian can be generically written as:

$$\mathcal{L}_{\mathrm{PNJL}} = \mathcal{L}_{\mathsf{pure-gauge}} + \mathcal{L}_{\mathrm{4F}} + \mathcal{L}_{\mathrm{6F}} + \mathcal{L}_{k}$$

- Without losing generality, we consider below massless 3-flavour case in fundamental representation of SU(3) gauge symmetry
- Here, \mathcal{L}_{4F} is the four-quark interaction which reads:

$$\mathcal{L}_{4F} = G_S \sum_{a=0}^{8} [(\bar{\psi}\lambda^a\psi)^2 + (\bar{\psi}i\gamma^5\lambda^a\psi)^2], \qquad \psi = (u, d, s)^T$$

• Six-fermion interaction $\mathcal{L}_{6\mathrm{F}}$ denotes the Kobayashi-Maskawa-'t Hooft (KMT) term breaking $U(1)_A$ down to Z_3 (generically Z_{N_f} for N_f flavours)

$$\mathcal{L}_{6F} = G_D[\det(\bar{\psi}_{Li}\psi_{Rj}) + \det(\bar{\psi}_{Ri}\psi_{Lj})]$$

The Condensate Energy (Fukushima, Skokov, PPNP 96 (2017) 154)

ullet In $\mathcal{L}_{\mathrm{4F}}$, the condensate energy then comes from the combination

$$(\bar{\psi}\lambda^0\psi)^2 + (\bar{\psi}\lambda^3\psi)^2 + (\bar{\psi}\lambda^8\psi)^2 = 2(\bar{u}u)^2 + 2(\bar{d}d)^2 + 2(\bar{s}s)^2$$

• We use the trick is to rewrite $(\bar{u}u)^2$ as

$$(\bar{u}u)^{2} = [(\bar{u}u - \langle \bar{u}u \rangle) + \langle \bar{u}u \rangle]^{2} = (\bar{u}u - \langle \bar{u}u \rangle)^{2} + 2\langle \bar{u}u \rangle (\bar{u}u - \langle \bar{u}u \rangle) + \langle \bar{u}u \rangle^{2}$$
$$\simeq -\langle \bar{u}u \rangle^{2} + 2\langle \bar{u}u \rangle \bar{u}u,$$

where the $(\bar{u}u - \langle \bar{u}u \rangle)^2$ term is dropped in the spirit of the mean-field approximation.

- The $2\langle \bar{u}u\rangle \bar{u}u$ term contributes to the constituent quark mass of u
- ullet The $-\langle ar{u}u
 angle^2$ term leads to a contribution to the condensate energy
- Similar procedures can be applied to $(\bar{d}d)^2$ and $(\bar{s}s)^2$, and to $\mathcal{L}_{6\mathrm{F}}$ gives $\langle \bar{u}u \rangle^3$ and we obtain the total condensate energy:

$$V_{\rm cond} = 6G_S \sigma^2 + \frac{1}{2}G_D \sigma^3$$
, $\sigma \equiv \langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = \frac{1}{3} \langle \bar{\psi}\psi \rangle$

The Constituent Quark Mass and Zero Point Energy: I

(Fukushima, Skokov, PPNP 96 (2017) 154)

- In $\mathcal{L}_{6\mathrm{F}}$, there is also $\langle \bar{u}u \rangle^2 \bar{u}u$ term contributes to the constituent quark mass of u
- ullet The total constituent quark mass from $\mathcal{L}_{4\mathrm{F}}$ and $\mathcal{L}_{6\mathrm{F}}$ is:

$$M = -4G_S\sigma - \frac{1}{4}G_D\sigma^2$$

• The expression for the zero-point energy is given by:

$$V_{\text{zero}}[\langle \bar{\psi}\psi \rangle] = -\text{dim}(\mathbf{R}) \, 2N_f \int \frac{\mathrm{d}^3 p}{(2\pi)^3} E_p \,, \qquad E_p = \sqrt{\vec{p}^2 + M^2}$$

 E_p is the energy of a free quark with constituent mass M and three-momentum \vec{p}

• The above integration diverges and a regularization is required. We choose a sharp three-momentum cutoff Λ entering the expression for observables and thus also a parameter of the theory.

(Fukushima, Skokov, PPNP 96 (2017) 154)

• The integration can be carried analytically and the result is:

$$\begin{split} V_{\mathsf{zero}}\big[\langle\bar{\psi}\psi\rangle\big] &= -\frac{\dim(\mathbf{R})N_f\Lambda^4}{8\pi^2} \bigg[(2+\xi^2)\sqrt{1+\xi^2} \\ &\quad + \frac{\xi^4}{2}\ln\frac{\sqrt{1+\xi^2}-1}{\sqrt{1+\xi^2}+1}\bigg], \end{split}$$

in which $\xi \equiv \frac{M}{\Lambda}$.

Medium Potential: Finite Temperature Contribution

- In the standard NJL model, the medium effect (finite temperature contribution) is implemented by the grand canonical partition function
- In the PNJL model, we can simply do the following replacement to include the contribution from Polyakov loop

$$\begin{split} V_{\text{medium}} &= -2N_c T \sum_{u,d,s} \int \frac{d^3 p}{(2\pi)^3} \left(\ln \left[1 + e^{-\beta(E-\mu)} \right] + \ln \left[1 + e^{-\beta(E+\mu)} \right] \right) \\ &\rightarrow -2T \sum_{u,d,s} \int \frac{d^3 p}{(2\pi)^3} \operatorname{Tr}_c \left\{ \left(\ln \left[1 + \mathbf{L} \, e^{-\beta(E-\mu)} \right] + \ln \left[1 + \mathbf{L}^\dagger e^{-\beta(E+\mu)} \right] \right) \right\} \end{split}$$

L is the Polyakov loop:

$$\mathbf{L}(\vec{x}) = \mathcal{P} \exp \left[i \int_0^{1/T} A_4(\vec{x}, \tau) \, \mathrm{d}\tau \right]$$

• Parameters: G_S , G_D , Λ ; Observables: M, f_{π} , m_{σ}

Second Part: Bubble Nucleation and Gravitatioanl Wave

15/39

Bubble Nucleation: Generic Discussion

- In a first-order phase transition, the transition occurs via bubble nucleation and it is essential to compute the nucleation rate
- ullet The tunnelling rate due to thermal fluctuations from the metastable vacuum to the stable one is suppressed by the three-dimensional Euclidean action $S_3(T)$

$$\Gamma(T) = T^4 \left(\frac{S_3(T)}{2\pi T}\right)^{3/2} e^{-S_3(T)/T}$$

- The tunnelling via quantum fluctuation S_4 is much smaller $(T_n/T_c \sim 1)$
- The generic three-dimensional Euclidean action reads

$$S_3(T) = 4\pi \int_0^\infty \! \mathrm{d}r \, r^2 \! \left[\frac{1}{2} \! \left(\frac{\mathrm{d}\rho}{\mathrm{d}r} \right)^2 + V_{\mathrm{eff}}(\rho,T) \right] \, , \label{eq:S3T}$$

where ρ denotes a generic scalar field with mass dimension one, $[\rho]=1$

Bubble Nucleation: Confinement Phase Transition

(Huang, Reichert, Sannino and Z-WW, PRD 104 (2021) 035005

- Confinement phase transition: pure gluon & adjoint/2-index sym. fermions
- $[\ell] = 0$ dimensionless while $[\rho] = 1$, we rewrite ρ as $\rho = \ell T$ and convert the radius into a dimensionless quantity r' = r T:

$$S_3(T) = 4\pi T \int_0^\infty \!\!\mathrm{d}r'\,r'^2 \!\left[\frac{1}{2} \left(\frac{\mathrm{d}\ell}{\mathrm{d}r'} \right)^2 + V'_{\mathsf{eff}}(\ell,T) \right] \,, \label{eq:S3}$$

which has the same form as the above generic equation.

• The bubble profile (instanton solution) is obtained by solving the E.O.M. of the $S_3(T)$

$$\frac{\mathrm{d}^2\ell(r')}{\mathrm{d}r'^2} + \frac{2}{r'}\frac{\mathrm{d}\ell(r')}{\mathrm{d}r'} - \frac{\partial V'_{\mathrm{eff}}(\ell,T)}{\partial \ell} = 0$$

The boundary conditions (deconfinement → confinement) are

$$\frac{\mathrm{d}\ell(r'=0,T)}{\mathrm{d}r'} = 0, \qquad \lim_{r' \to 0} \ell(r',T) = 0$$

• We used the method of overshooting/undershooting (Python package)

Bubble Profile of Confinement Phase Transition

(Huang, Reichert, Sannino and Z-WW, PRD 104 (2021) 035005

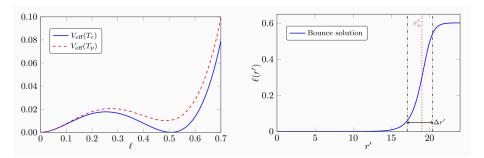


Figure: The bubble radius is indicated by r'_* and the wall width by $\Delta r'$. Inside of the bubble $(r' \ll r'_*)$ lying the confinement phase, the Z_N symmetry is unbroken and $\langle \ell \rangle = 0$, while outside of the bubble $(r \gg r'_*)$ lying the deconfinement phase, the Z_N symmetry is broken and $\langle \ell \rangle > 0$.

Bubble Nucleation: Chiral Phase Transition

(Reichert, Sannino, Z-W W and Zhang, JHEP 01 (2022) 003, arXiv:2109.11552)

- Chiral phase transition occurs when including fermions in fund. rep.
- \bullet $\bar{\sigma}$ is classically nonpropagating in PNJL and it's kinetic term is induced only via quantum fluctuations
- ullet We thus include its wave-function renormalization Z_{σ} with

$$Z_{\sigma}^{-1} = -\frac{\mathrm{d}\Gamma_{\sigma\sigma}(q^0, \mathbf{q}, \bar{\sigma})}{\mathrm{d}\mathbf{q}^2}\bigg|_{q^0 = 0, \mathbf{q}^2 = 0}$$

• The three-dimensional Euclidean action and E.O.M. are modified to (ℓ is chosen to minimize the potential for any $(\bar{\sigma}, T)$):

$$\begin{split} S_3(T) &= 4\pi \int_0^\infty \! \mathrm{d} r \, r^2 \! \left[\frac{Z_\sigma^{-1}}{2} \! \left(\frac{\mathrm{d} \bar{\sigma}}{\mathrm{d} r} \right)^2 + V_{\mathrm{eff}}(\bar{\sigma}, T) \right] \\ \frac{\mathrm{d}^2 \bar{\sigma}}{\mathrm{d} r^2} &+ \frac{2}{r} \frac{\mathrm{d} \bar{\sigma}}{\mathrm{d} r} - \frac{1}{2} \frac{\partial \log Z_\sigma}{\partial \bar{\sigma}} \left(\frac{\mathrm{d} \bar{\sigma}}{\mathrm{d} r} \right)^2 = Z_\sigma \frac{\partial V_{\mathrm{eff}}}{\partial \bar{\sigma}} \end{split}$$

• The associated boundary conditions:

$$\frac{\mathrm{d}\bar{\sigma}(r=0,T)}{\mathrm{d}r} = 0, \qquad \lim_{r \to \infty} \bar{\sigma}(r,T) = 0$$

Gravitational Wave Parameters: Inverse Duration Time

- The phase-transition temperature T_* is often identified with the nucleation temperature T_n defined as the temperature where the rate of bubble nucleation per Hubble volume and time is order one: $\Gamma/H^4 \sim \mathcal{O}(1)$
- More accurately, we can use percolation temperature T_p : the temperature at which 34% of false vacuum is converted
- For sufficiently fast phase transitions, the decay rate is approximated by:

$$\Gamma(T) \approx \Gamma(t_*)e^{\beta(t-t_*)}$$

The inverse duration time then follows as

$$\beta = -\frac{\mathrm{d}}{\mathrm{d}t} \frac{S_3(T)}{T} \bigg|_{t=t_*}$$

• The dimensionless version $\tilde{\beta}$ is defined relative to the Hubble parameter H_* at the characteristic time t_*

$$\tilde{\beta} = \frac{\beta}{H_*} = T \frac{\mathrm{d}}{\mathrm{d}T} \frac{S_3(T)}{T} \bigg|_{T=T_*},$$

where we used that dT/dt = -H(T)T.

Gravitational Wave Parameters: Strength Parameter I

(Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005

Reichert, Sannino, Z-W W and Zhang, JHEP 01 (2022)003, arXiv:2109.11552.)

• We define the strength parameter α from the trace of the energy-momentum tensor θ weighted by the enthalpy

$$\alpha = \frac{1}{3} \frac{\Delta \theta}{w_{+}} = \frac{1}{3} \frac{\Delta e - 3\Delta p}{w_{+}}, \qquad \Delta X = X^{(+)} - X^{(-)}, \text{ for } X = (\theta, e, p)$$

(+) denotes the meta-stable phase (outside of the bubble) while (-) denotes the stable phase (inside of the bubble).

• The relations between enthalpy w, pressure p, and energy e are given by

$$w = \frac{\partial p}{\partial \ln T} \,, \qquad \qquad e = \frac{\partial p}{\partial \ln T} - p \,,$$

which are extracted from the effective potential with

$$p^{(\pm)} = -V_{\rm eff}^{(\pm)}$$

Gravitational Wave Parameters: Strength Parameter II

(Huang, Reichert, Sannino and Z-WW, PRD 104 (2021) 035005

Reichert, Sannino, Z-WW and Zhang, JHEP 01 (2022) 003, arXiv:2109.11552.)

ullet α is thus given by

$$\alpha = \frac{1}{3} \frac{4\Delta V_{\rm eff} - T \frac{\partial \Delta V_{\rm eff}}{\partial T}}{-T \frac{\partial V_{\rm eff}}{\partial T}} \,, \label{eq:alpha}$$

- For confinement phase transition: $\alpha\approx 1/3$ ($\Delta V_{\rm eff}$ is negligible since $e_+\gg p_+$ and $e_-\sim p_-\sim 0$ in PLM potential)
- For chiral phase transition: we find smaller values, $\alpha \sim \mathcal{O}(10^{-2})$, due to the fact that more relativistic d.o.f.s participate in the phase transition
- ullet Relativistic SM d.o.f.s do not contribute to our definition of lpha since they are fully decoupled from the phase transition but these d.o.f.s will play a role to dilute the GW signals

GW parameters α , β and PNJL observables

(Reichert, Sannino, Z-W W and Zhang, JHEP 01 (2022) 003, arXiv:2109.11552.)

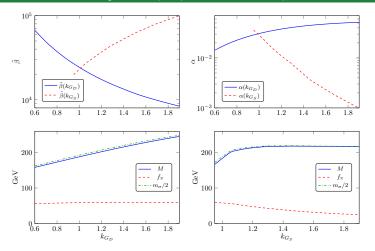


Figure: The GW parameters $\tilde{\beta}$, α with the observables M, f_{π} , and m_{σ} as a function of $G_S=k_{G_S}\cdot 4.6\,{\rm GeV}^{-2}$ and $G_D=k_{G_D}\cdot (-743\,{\rm GeV}^{-5})$. We use $T_c=100\,{\rm GeV}$, the ratio $\Lambda/T_0=3.54$. Below $k_{G_S,{\rm crit}}=0.882$, no chiral symmetry breaking occurs.

Gravitational-wave spectrum

(Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005)

- Contributions from bubble collision and turbulence are subleading
- The GW spectrum from sound waves is given by

$$h^2\Omega_{\rm GW}(f) = h^2\Omega_{\rm GW}^{\rm peak} \left(\frac{f}{f_{\rm peak}}\right)^3 \left[\frac{4}{7} + \frac{3}{7} \left(\frac{f}{f_{\rm peak}}\right)^2\right]^{-\frac{f}{2}}$$

The peak frequency

$$f_{\rm peak} \simeq 1.9 \cdot 10^{-5} \, {\rm Hz} \left(\frac{g_*}{100}\right)^{\frac{1}{6}} \left(\frac{T}{100 \, {\rm GeV}}\right) \left(\frac{\tilde{\beta}}{v_w}\right)$$

The peak amplitude

$$h^2 \Omega_{\rm GW}^{\rm peak} \simeq 2.65 \cdot 10^{-6} \left(\frac{v_w}{\tilde{\beta}}\right) \left(\frac{\kappa_{sw} \, \alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{\frac{1}{3}} \Omega_{\rm dark}^2$$

• The factor $\Omega^2_{\rm dark}$ accounts for the dilution of the GWs by the non-participating SM d.o.f.

$$\Omega_{\rm dark} = \frac{\rho_{\rm rad,dark}}{\rho_{\rm rad,tot}} = \frac{g_{\rm *,dark}}{g_{\rm *,dark} + g_{\rm *,SM}}$$

The Efficiency Factor κ

• The efficiency factor for the sound waves $\kappa_{\rm sw}$ consist of the factor κ_v as well as an additional suppression due to the length of the sound-wave period $\tau_{\rm sw}$

$$\kappa_{\rm SW} = \sqrt{\tau_{\rm SW}} \, \kappa_v$$

ullet au_{sw} is dimensionless and measured in units of the Hubble time

$$\tau_{\rm sw} = 1 - 1/\sqrt{1 + 2\frac{(8\pi)^{\frac{1}{3}}v_w}{\tilde{\beta}\,\bar{U}_f}} \, \Rightarrow \tau_{\rm sw} \sim \frac{(8\pi)^{\frac{1}{3}}v_w}{\tilde{\beta}\,\bar{U}_f} \ \, {\rm for} \, \beta >> 1$$

where $ar{U}_f$ is the root-mean-square fluid velocity

$$\bar{U}_f^2 = \frac{3}{v_w(1+\alpha)} \int_{c_s}^{v_w} d\xi \, \xi^2 \frac{v(\xi)^2}{1-v(\xi)^2} \simeq \frac{3}{4} \frac{\alpha}{1+\alpha} \kappa_v$$

- $\tau_{\rm sw}$ is suppressed for large β occurring often in strongly coupled sectors
- κ_v was numerically fitted to simulation results depends α and v_w . At the Chapman-Jouguet detonation velocity it reads

$$\kappa_v(v_w = v_J) = \frac{\sqrt{\alpha}}{0.135 + \sqrt{0.98 + \alpha}}$$

Landscape of GW spectrum with three Dirac fermions

(Reichert, Sannino, Z-W W and Zhang, JHEP 01 (2022) 003, arXiv:2109.11552.)

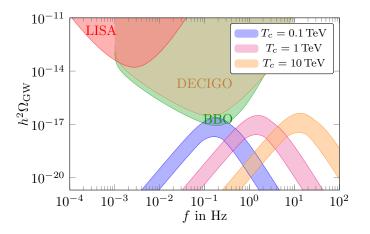


Figure: Gravitational-wave spectrum with three Dirac fermions in the fundamental representation for different critical temperatures.

Representation Matters

(Reichert, Sannino, Z-W W and Zhang, JHEP 01 (2022) 003, arXiv:2109.11552.)

Rep.	flavour	chiral PT	confdeconf.
Fund.	3	1st	X
adjoint	1	2nd	1st
2-index Sym.	1	2nd	1st

Table: Representations versus different phase transitions.

ullet Need small N_f to remain below the conformal Banks-Zaks window.

Signal to Noise Ratio for Pure Gluon

(Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005)

$$\mathsf{SNR} = \sqrt{\frac{3 \mathrm{year}}{s}} \int_{f_{\mathsf{min}}}^{f_{\mathsf{max}}} \mathrm{d}f \left(\frac{h^2 \Omega_{\mathsf{GW}}}{h^2 \Omega_{\mathsf{det}}}\right)^2$$

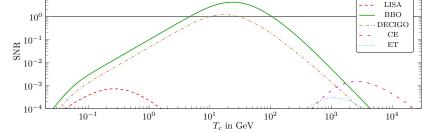


Figure: We display the SNR for the phase transition in a dark SU(6) sector as a function of the confinement temperature Tc from experiments of LISA, BBO, DECIGO, CE, and ET. We assume an observation time of three years.

August 2nd, 2022

Signal to Noise Ratio for Different Representations

(Reichert, Sannino, Z-W W and Zhang, JHEP 01 (2022) 003, arXiv:2109.11552.)

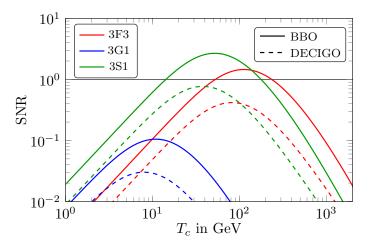


Figure: Signal-to-noise ratio as a function of the critical temperature for the best-case scenarios of each model at BBO and DECIGO with an observation time of 3 years.

Thank you for your attention!

About Center Symmetry and Confinement

 The standard physical interpretation is that it is related to the free energy of adding an external static color source in the fundamental representation.

$$\ell\left(\vec{x}\right) = \exp\left(-F\beta\right)$$

 In the confinement phase, Polyakov loop is zero corresponds to infinity free energy to add a color source and the same time center symmetry is unbroken.

31/39

Polyakov Loop Model for Pure Gluons: I

- Pisarski first proposed the Polyakov-loop Model as an effective field theory to describe the confinement-deconfinement phase transition of SU(N) gauge theory (Pisarski, PRD 62 (2000) 111501).
- In a local SU(N) gauge theory, a global center symmetry Z(N) is used to distinguish confinement phase (unbroken phase) and deconfinement phase (broken phase)
- \bullet An order parameter for the Z(N) symmetry is constructed using the Polyakov Loop (thermal Wilson line) $_{\rm (Polyakov,\,PLB\,72\,(1978)\,477)}$

$$\mathbf{L}(\vec{x}) = \mathcal{P} \exp \left[i \int_0^{1/T} A_4(\vec{x}, \tau) \, \mathrm{d}\tau \right]$$

The symbol ${\mathcal P}$ denotes path ordering and A_4 is the Euclidean temporal component of the gauge field

 \bullet The Polyakov Loop transforms like an adjoint field under local SU(N) gauge transformations

Polyakov Loop Model for Pure Gluons: II

ullet Convenient to define the trace of the Polyakov loop as an order parameter for the Z(N) symmetry

$$\ell\left(\vec{x}\right) = \frac{1}{N} \operatorname{Tr}_{c}[\mathbf{L}],$$

where Tr_c denotes the trace in the colour space.

 \bullet Under a global Z(N) transformation, the Polyakov loop ℓ transforms as a field with charge one

$$\ell \to e^{i\phi}\ell, \qquad \phi = \frac{2\pi j}{N}, \qquad j = 0, 1, \cdots, (N-1)$$

• The expectation value of ℓ i.e. $< \ell >$ has the important property:

$$\langle \ell \rangle = 0 \quad (T < T_c, \text{ Confined}); \qquad \langle \ell \rangle > 0 \quad (T > T_c, \text{ Deconfined})$$

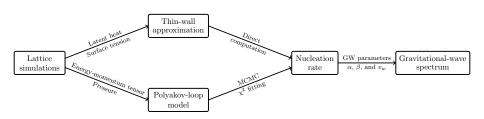
ullet At very high temperature, the vacua exhibit a N-fold degeneracy:

$$\langle \ell \rangle = \exp\left(i\frac{2\pi j}{N}\right)\ell_0, \qquad j = 0, 1, \dots, (N-1)$$

where ℓ_0 is defined to be real and $\ell_0 \to 1$ as $T \to \infty$

Procedure of pure gluon case

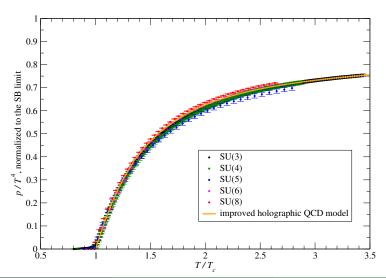
(Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005



Fitting the Coefficients Using the Lattice Results: I

Marco Panero, Phys.Rev.Lett. 103 (2009) 232001

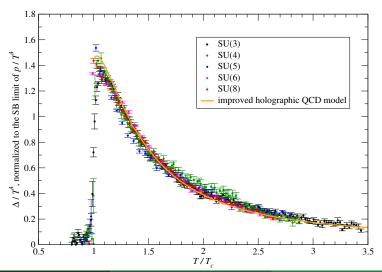
Pressure



Fitting the Coefficients Using the Lattice Results: II

Marco Panero, Phys.Rev.Lett. 103 (2009) 232001

Trace of the energy-momentum tensor



GW Signatures for Arbitrary N in the Pure Gluon Case

(Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005)

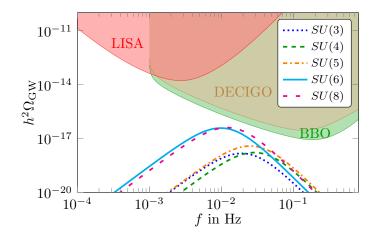


Figure: The dependence of the GW spectrum on the number of dark colours is shown for the values N=3,4,5,6,8. All spectra are plotted with the bubble wall velocity set to the Chapman-Jouguet detonation velocity and with ${\it Tc}=1\,{\rm GeV}$.

GW Spectrum

 The main properties of GWs are described by the power spectrum, which is defined as the spectrum of energy density per logarithmic frequency interval:

$$h^2\Omega_{\rm GW}(f) = \frac{h^2}{\rho_c} \frac{d\rho_{GW}}{dlogf},$$

where ρ_c is the critical density today $\rho_c=3H_0/(8\pi G)$ while ρ_{GW} is GW energy density and h is the dimensionless Hubble parameter with $h\sim0.7$.

A Landscape of GW Signatures with Pure Gluon

(Huang, Reichert, Sannino and Z-W W, PRD 104 (2021) 035005)

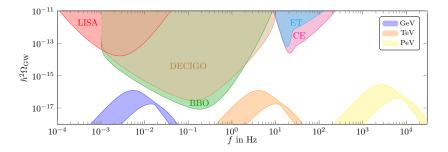


Figure: We display the GW spectrum of the SU(6) phase transition for different confinement scales including $T_c=1\,\mathrm{GeV}$, 1 TeV, and 1 PeV. We compare it to the power-law integrated sensitivity curves of LISA, BBO, DECIGO, CE, and ET.