Instanton gas approximation for the Hubbard model

Maksim Ulybyshev,
Universität Würzburg, Germany
maksim.ulybyshev@physik.uni-wuerzburg.de
in collaboration with:
Fakher Assaad, Savvas Zafeiropoulos, Christopher Winterowd

Why Hubbard model? (1)

High Tc superconductivity in cuprates:

N. Barišić et al, Proceedings of the National Academy of Sciences 110(30)

Why Hubbard model? (2)

Single band Hubbard model

Three-band Hubbard model
Charge reservoir layers are taken into account through the chemical potential

$$
\hat{H}=-\kappa \sum_{\langle x, y\rangle, \sigma}\left(\hat{c}_{x \sigma}^{\dagger} \hat{c}_{y \sigma}+h . c .\right)+U \sum_{x} \hat{n}_{x \uparrow} \hat{n}_{x \downarrow}-\left(\frac{U}{2}-\mu\right) \sum_{x}\left(\hat{n}_{x \uparrow}+\hat{n}_{x \downarrow}-1\right)
$$

Hubbard model on bipartite lattice

 $\hat{H}=-\kappa \sum_{\langle x, y\rangle, \sigma}\left(\hat{c}_{x \sigma}^{\dagger} \hat{c}_{y \sigma}+\right.$ h.c. $)+U \sum_{x} \hat{n}_{x \uparrow} \hat{n}_{x \downarrow}-\left(\frac{U}{2}-\mu\right) \sum_{x}\left(\hat{n}_{x \uparrow}+\hat{n}_{x \downarrow}-1\right)$rm: no sign problem on any
bipartite lattice
Hopping term: no sign problem on any

(

Chemical potential: the key ingredient leading to superconductivity

Increasing chemical potential

Why do we need approximations? (1)

$$
\hat{H}=-\kappa \sum_{\langle x, y\rangle), \sigma}\left(\hat{c}_{x \sigma}^{\dagger} \hat{c}_{y \sigma}+h . c .\right)+U \sum_{x} \hat{n}_{x \uparrow} \hat{n}_{x \downarrow}-\left(\frac{U}{2}-\mu\right) \sum_{x}\left(\hat{n}_{x \uparrow}+\hat{n}_{x \downarrow}-1\right)
$$

Zero chemical potential («half filling»): Antiferromagnetic (AFM) order, or transition from semimetal to AFM insulator, all identified with exact Quantum Monte Carlo
«Localized spins» assembled in antiferromagnetic order

Square lattice (T. Schäfer et al, arXiv:1405.7250)

Hexagonal lattice (zero temperature point from F. Assaad, I. Herbut PRX 3, 031010 (2013))

Why do we need approximations? (2)

$$
\hat{H}=-\kappa \sum_{\langle x, y\rangle, \sigma}\left(\hat{c}_{x \sigma}^{\dagger} \hat{c}_{y \sigma}+\text { h.c. }\right)+U \sum_{x} \hat{n}_{x \uparrow} \hat{n}_{x \downarrow}-\left(\frac{U}{2}-\mu\right) \sum_{x}\left(\hat{n}_{x \uparrow}+\hat{n}_{x \downarrow}-1\right)
$$

Only this tiny region is accessible for the simulations!

Prohibitively expensive simulations due to the sign problem

Another motivation: structure of the thimbles

 decomposition$$
\begin{gathered}
\mathcal{Z}=\int_{\mathbb{R}^{N}} \mathcal{D} \Phi e^{-S[\Phi]}=\sum_{\sigma} k_{\sigma} \mathcal{Z}_{\sigma} \\
\mathcal{Z}_{\sigma}=\int_{\mathcal{I}_{\sigma}} \mathcal{D} \Phi e^{-S[\Phi]}
\end{gathered}
$$

Saddle point: $\left.\quad \frac{\partial S}{\partial \Phi}\right|_{\Phi=z_{\sigma}}=0$
Gradient flow equations:

$$
\frac{d \Phi}{d t}=\frac{\overline{\partial S}}{\partial \Phi}
$$

$$
\mathcal{Z}=\sum_{\sigma} k_{\sigma} e^{-i \operatorname{Im} S\left(z_{\sigma}\right)} \int_{\mathcal{I}_{\sigma}} \mathcal{D} \Phi e^{-\operatorname{Re} S(\Phi)}
$$

Structure of the thimbles decomposition in the thermodynamic limit for the model with lattice fermions: one- or many-thimble regime?
Spoiler: instanton gas model for the field configurations at saddle points predicts the dominant saddles with reasonable accuracy.

Knowing all relevant saddle points, which physical properties can we describe with this saddle point approximation?
Spoiler: instanton gas model gives good predictions for the localization of electrons, but one needs full integral over just one dominant thimble in order to describe the spontaneous symmetry breaking.

$$
S(x)=\frac{x^{2}}{2 \beta U}-\ln \left(\left(1+e^{i x-\beta \mu}\right)\left(1+e^{-i x+\beta \mu}\right)\right)
$$

Path integrals for the Hubbard model

$$
\hat{H}=-\kappa \sum_{\langle x, y\rangle}\left(\hat{a}_{x}^{\dagger} \hat{a}_{y}+\hat{b}_{x}^{\dagger} \hat{b}_{y}+\mathrm{h.c}\right)+\frac{U}{2} \sum_{x} \hat{q}_{x}^{2}+\mu \sum_{x} \hat{q}_{x} \quad \hat{q}=\hat{n}_{e l .}-\hat{n}_{h .}
$$

Trotter decomposition:

$$
\mathcal{Z}=\operatorname{Tr} e^{-\beta \hat{H}} \approx \operatorname{Tr}\left(e^{-\delta \hat{H}_{(2)}} e^{-\delta \hat{H}_{(4)}} e^{-\delta \hat{H}_{(2)}} e^{-\delta \hat{H}_{(4)}} \ldots\right)
$$

Subsequently, the auxiliary field is introduced via the Hubbard-Stratonovich transformation:

$$
\begin{gathered}
e^{-\frac{\Delta \tau}{2} U \hat{q}_{\boldsymbol{x}}^{2}} \cong \int d \phi_{\boldsymbol{x}} e^{-\frac{\phi_{x}^{2}}{2 U \Delta \tau}+i \phi_{\boldsymbol{x}} \hat{q}_{\boldsymbol{x}}} \\
\mathcal{Z}=\int \mathcal{D} \phi e^{-S_{B}[\phi]} \operatorname{det} M_{e l .}[\phi] \operatorname{det} M_{h .}[\phi]
\end{gathered}
$$

Purely Gaussian bosonic action: $S_{B}[\phi]=\sum_{\boldsymbol{x}, \tau} \frac{\phi_{\boldsymbol{x}, \tau}^{2}}{2 U \Delta \tau} \quad S=S_{B}-\ln \left(\operatorname{det} M_{e l} . \operatorname{det} M_{h .}\right)$
We will work mostly with hexagonal lattice (a bit simpler construction of saddle points):

Lifshitz transition

Algorithms: exact calculation of fermionic forces

$$
\begin{gathered}
S=S_{B}-\ln \left(\operatorname{det} M_{e l .} \operatorname{det} M_{h .}\right) \quad \frac{d \Phi}{d t}=\frac{\overline{\partial S}}{\partial \Phi} \\
S_{B}[\phi]=\sum_{x, \tau} \frac{\phi_{x, \tau}^{x}}{2 U \Delta \tau}
\end{gathered}
$$

Purely Gaussian bosonic action does not carry any non-trivial info.
We must take into account fermionic determinant in GF

Possible for staggered fermions [Nuclear Physics B 371, 539 (1992)], Wilson fermions, and general tightbinding lattice models in condensed matter physics

Derivative:

$$
\frac{\partial \ln \operatorname{det} M}{\partial \Phi}=\operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \Phi}\right)
$$

Elements of fermionic propagator are computed through the iterations

$$
\bar{g}_{i+1}=D_{i+1}^{-1} \bar{g}_{i} D_{i} \quad N_{s}^{3} N_{\tau} \text { - scaling }
$$

«seed» blocks for iterations - from Schur complement solver [arXiv 1803.05478]

Recovering exact saddle points from

 Hybrid Monte Carlo data (no sign problem)

1) generation of lattice field configurations;
2) GF for each configuration;
3) Histogram for the final actions after GF shows

$$
\frac{Z_{\sigma}}{Z}
$$

If HMC is ergodic, we can find all saddles with the share in partition function $>1 / N_{\text {confs }}$

$$
\begin{gathered}
\mathcal{Z}=\int_{\mathbb{R}^{N}} \mathcal{D} \Phi e^{-S[\Phi]}=\sum_{\sigma} k_{\sigma} \mathcal{Z}_{\sigma} \\
\mathcal{Z}_{\sigma}=\int_{\mathcal{I}_{\sigma}} \mathcal{D} \Phi e^{-S[\Phi]}
\end{gathered}
$$

History of the action:

Stabilization of the histogram:

Saddles for the Hubbard model on hexagonal lattice

$6 \times 6 \times 512, \alpha=0.99, \beta=20.0, U=4.0$

Building blocks for saddle point field configurations are localized both in space and Euclidean time: instantons and antiinstantons

Instantons with back reaction from fermions (1)

$$
\begin{aligned}
& S=\frac{\sum_{x, \tau}\left(\phi_{x}^{\tau}\right)^{2}}{2 U \Delta \tau}-\ln \operatorname{det}\left(M_{e l}, M_{h .}\right) \\
& \frac{\partial \ln \operatorname{det} M}{\partial \Phi}=\operatorname{Tr}\left(M^{-1} \frac{\partial M}{\partial \Phi}\right)
\end{aligned}
$$

Saddle point equations including fermionic forces:

$$
\frac{\partial S}{\partial \phi_{x}^{\tau}}=\frac{\phi_{x}^{\tau}}{\Delta \tau U}-\left(\bar{g}_{x x}^{2 \tau} i e^{i \phi_{x}^{\tau}}-\left(\bar{g}_{x x}^{2 \tau}\right) * i e^{-i \phi_{x}^{\tau}}\right)
$$

Connection between bosonic field and fermionic propagator (in continuum limit $\Delta \tau \rightarrow 0$):

$$
\phi_{x}^{\tau}=-U \operatorname{Im} \bar{g}_{x x}^{\tau}
$$

We need to close the system of equations with the evolution of fermionic propagator:

$$
\bar{g}^{2(\tau+1)}=\left\{e^{-i \phi_{x}^{(\tau+1)}}\right\} e^{\Delta \tau h} \bar{g}^{\tau}\left\{e^{i \phi_{x}^{(\tau+1)}}\right\} e^{-\Delta \tau h}
$$

Instantons with back reaction from fermions (2)

In the continuous time limit: $\quad \Delta \tau \rightarrow 0$
C_{3}-symmetry, and rapid decay of propagator: $g_{x y} \rightarrow 0,|\vec{x}-\vec{y}| \rightarrow \infty$
$\left\{\begin{array}{c}\frac{d}{d \tau} \operatorname{Im} g_{x x}(\tau)=6 \kappa \operatorname{Im} g_{x y}(\tau) \\ \frac{d}{d \tau} \operatorname{Im} g_{x y}(\tau)=i U g_{x y}(\tau) \operatorname{Im} g_{x x}(\tau)+i \kappa \operatorname{Im} g_{x x}(\tau)\end{array}\right.$
$\operatorname{Im} g_{x x}(\tau)=d(\tau), \quad \operatorname{Re} g_{x x}(\tau)=1 / 2, \quad g_{x y}(\tau)=a(\tau)+i b(\tau)$
$G=U / \kappa$
$\left\{\begin{array}{c}\dot{d}(\tau)=6 \kappa b(\tau) \\ \dot{a}(\tau)=-U b(\tau) d(\tau) \\ \dot{b}(\tau)=d(\tau)(\kappa+U a(\tau))\end{array}\right.$
$\left\{\begin{array}{c}a(\tau)=-1 / G+R \cos \theta(\tau) \\ b(\tau)=R \sin \theta(\tau) \\ d(\tau)=\dot{\theta}(\tau) / G\end{array}\right.$

The final equation:

$$
\ddot{\theta}(s)=\sin \theta(s), s=\kappa \tau \sqrt{6 G R}, s=0 \ldots \kappa \beta \sqrt{6 G R}
$$

Instantons with back reaction from fermions (3)

Non-linear pendulum:

$$
\begin{gathered}
K=\frac{m(l \dot{\theta})^{2}}{2}, P=m g l(1-\cos \theta) \\
H=\frac{\dot{\theta}^{2}}{2}+\frac{g}{l}(1-\cos \theta) \\
\ddot{\theta}=-\frac{g}{l} \sin \theta
\end{gathered}
$$

$$
\theta \rightarrow \pi+\theta \quad \ddot{\theta}=\frac{g}{l} \sin \theta
$$

Initial condition(vacuum):
$\operatorname{Im} g_{x y}=0 \Rightarrow b(\tau=0)=0 \Rightarrow \theta(\tau=0)=0$
$\dot{\theta}(\tau=0)$ - defined by the number of instantons and anti-instantons

Instantons with back reaction from fermions (4)

Number of instantons and anti-instantons fixes the initial conditions (time for one full rotation):

$$
\frac{\dot{\theta}^{2}}{2}+\cos \theta=E_{0} \quad \beta / N_{\text {inst. }}=2 \int_{0}^{\pi} \frac{d \theta}{\sqrt{2\left(E_{0}-\cos \theta\right)}}
$$

Instanton and antiinstanton:

Width of the instanton

Two instantons:

Winding number: $\quad W=\frac{1}{2 \pi} \int_{0}^{\beta} d \tau \theta(\tau)$

Gaussian fluctuations around instanton (1)

$$
S \approx S\left(\phi^{(X, T)}\right)+\frac{1}{2}\left(\phi_{\boldsymbol{x}, \tau_{1}}-\phi_{\boldsymbol{x}, \tau_{1}}^{(X, T)}\right) \mathcal{H}_{\left(\boldsymbol{x}, \tau_{1}\right),\left(\boldsymbol{y}, \tau_{2}\right)}^{(1)}\left(\phi_{\boldsymbol{y}, \tau_{2}}-\phi_{\boldsymbol{y}, \tau_{2}}^{(X, T)}\right)
$$

Instanton saddle is in fact degenerate:

Continuous symmetry: zero mode in Hessian \mathscr{H}
$\mathscr{H}^{(1)}$ - includes all directions

$$
\frac{\mathcal{Z}_{1}}{\mathcal{Z}_{0}}=2 N_{S} L^{(1)} e^{-\tilde{S}^{(1)}}\left(2 \pi \frac{\operatorname{det} \mathcal{H}_{\perp}^{(1)}}{\operatorname{det} \mathcal{H}^{(0)}}\right)^{-1 / 2}
$$

$$
\tilde{S}^{(i)}=S^{(i)}-S_{v a c} .
$$

Gaussian fluctuations around instanton (2)

History of the flow:

Eigenvalues of the Hessian:

Quasi-zero mode, corresponding to the relative shift of the instantons

Hessians for multi-instanton saddles

$$
\operatorname{det} \mathscr{H}_{\perp}^{(1)}=\operatorname{det}\left(\mathscr{H}^{(1)}+\mathscr{P}^{(1)}\right)
$$

Projector to zero mode: $\quad \mathscr{P}^{(1)} \sim\left|\partial_{\tau} \phi(\vec{x}, \tau)\right\rangle\left\langle\partial_{\tau} \phi(\vec{x}, \tau)\right|$

$$
\begin{aligned}
& \frac{\operatorname{det} \mathscr{H}_{\perp}^{(1)}}{\operatorname{det} \mathscr{H}^{(0)}}=\operatorname{det}\left(\left(\mathscr{H}^{(1)}+\mathscr{P}^{(1)}\right)\left(\mathscr{H}^{(0)}\right)\right. \\
& \operatorname{det} \mathscr{H}_{\perp}^{(N)} \approx \operatorname{det}\left(\mathscr{H}^{(N)}+\sum_{q=1}^{N} \mathscr{P}_{q}^{(N)}\right)
\end{aligned}
$$

$$
\mathscr{P}_{q}^{(N)} \sim\left|\partial_{\tau_{q}} \phi\left(\vec{x}_{1} \ldots \vec{x}_{N}, \tau_{1} \ldots \tau_{N}\right)\right\rangle\left\langle\partial_{\tau_{q}} \phi\left(\vec{x}_{1} \ldots \vec{x}_{N}, \tau_{1} \ldots \tau_{N}\right)\right|
$$

$$
\frac{\operatorname{det} \mathscr{H}_{\perp}^{(N)}}{\operatorname{det} \mathscr{H}^{(0)}} \approx\left[\operatorname{det}\left(\underset{6 \times 66256, \beta=20.0, \mathrm{U}=5.0}{\left.\left(\mathscr{H}^{(1)}+\mathscr{P}^{(1)}\right)\left(\mathscr{H}^{(0)}\right)^{-1}\right)}\right]^{N}\right.
$$

1 instanton (elements>0.01):
$6 \times 6 \times 256, \beta=20.0, \mathrm{U}=5.0$

2 instantons:

Ways to formulate the classical instanton gas model

Analytical expression for the free energy of instanton gas with hardcore repulsion (no lattice structure, U-dependence only from input parameters: action of the instanton, etc.)

Both: only pairwise interaction of instantons

Model with full interaction profiles

Only hardcore repulsion

Analytical expression for the partition function for non-interacting instantons

$\frac{Z}{Z_{0}}=$

All N -instanton saddle points with Gaussian fluctuations around them. No interaction except that 2 instantons can not occupy the same volume in 2+1 D space-time
«vacuum» partition function:
integral over vacuum thimble

Minimal distance in Euclidean time ~ instanton width

Minimal distance in space ~ lattice step

$$
1+\sum_{K=1}^{K_{\max }} \frac{1}{K!}\left(\beta N_{s}-\Delta \beta X\right) \ldots\left(\beta N_{s}-(K-1) \Delta \beta X\right) 2^{2 K} \times e^{-S_{1} K}\left\{\left[\operatorname{det}\left(\mathscr{H}_{\perp}^{(1)}\left(\mathscr{H}^{(0)}\right)^{-1}\right)\right]^{-1 / 2} \frac{L}{\sqrt{2 \pi} \beta}\right\}
$$

number

Equivalence of instantons

Combinatorial factors including sublattice and instanton - anti-instanton indexes
instanton
action
Hessians and valley length, using:

$$
\frac{\operatorname{det} \mathscr{H}_{\perp}^{(N)}}{\operatorname{det} \mathscr{H}^{(0)}} \approx\left[\operatorname{det}\left(\left(\mathscr{H}^{(1)}+\mathscr{P}^{(1)}\right)\left(\mathscr{H}^{(0)}\right)^{-1}\right)\right]^{N}
$$

If we sum up to completely filled lattice (all slots are taken):

$$
K_{\max }=\frac{\beta}{\Delta \beta} \frac{N_{s}}{X}
$$

Free energy density: $f=f_{0}-\frac{1}{\Delta \beta X} \ln$
$\left(1+\frac{2 e^{-S_{1}} \Delta \beta X L}{\beta \sqrt{2 \pi \operatorname{det}\left(\mathscr{H}_{\perp}^{(1)}\left(\mathscr{H}^{(0)}\right)^{-1}\right)}}\right)$

Benchmark: distribution of instantons

Distribution for the number of instantons and its comparison vs analytical and classical MC predictions:

 \section*{Physics from weakly interacting instanton gas
 \section*{Physics from weakly interacting instanton gas model: spin localization and susceptibility} model: spin localization and susceptibility}

Magnetic susceptibility doesn't diverge at any point: no description of the phase transition (AFM spin ordering)

We described the increased spin localization, but local spins are still in paramagnetic phase

Spectral functions: comparison with QMC

Broadening of the spectral function on smaller lattices: local AFM correlation.

Spectral functions at K point (12×12 lattice):

ω

ω

Spectral functions away of Dirac point (1)

Spectral functions at Γ-point (12×12 lattice):

Appearance of the precursor for the upper Hubbard band at around $\mathrm{U}=3.5$

Energies and spectral weights of the peaks at Γ - point

Instanton gas approximation

Spectral functions away of Dirac point (2)

Spectral functions and relative spectral weight of the peaks in the whole BZ

Instanton gas approximation works just fine away of Dirac points.
It can be used for more precise inquires into the nature of the excited states via (projection) QMC+MEM in saddle point approximation

$$
\frac{\operatorname{Tr}\left(e^{-\hat{H}_{\text {full }} \beta} \hat{A} e^{-\hat{H}_{\text {full }} \tau} \hat{A}^{\dagger}\right)}{\operatorname{Tr}\left(e^{-\hat{H}_{\text {ful }}(\beta+\tau)}\right)}=\sum_{m}\left|C_{m}\right|^{2} e^{-\tau\left(E_{m}-E_{0}\right)}
$$

$$
\hat{A}\left|O_{\text {int. }}\right\rangle=\sum_{m} C_{m}|m\rangle \quad \hat{A}=\hat{a}_{k, \uparrow}^{\dagger} ; \quad \hat{a}_{-k_{1}, \uparrow}^{\dagger} \hat{a}_{k_{1}, \downarrow} \hat{a}_{k, \uparrow}^{\dagger} \ldots
$$

Spontaneous symmetry breaking and the generation of mass

12×12 lattice, momentum 0 , full qmc (ising fields), $\beta=20, \mathrm{U}=8.0$

Beyond Gaussian approximation: full integral over one dominant thimble

We do not take into account fluctuations of the field in observables, and in fact we can not do so in fermionic observables (easily)

$$
\begin{gathered}
\int O(x) P(x) d x \\
O(x) \rightarrow \infty \text { as } 1 / x \\
P(x) \rightarrow \text { const } \\
x \rightarrow x_{0}
\end{gathered}
$$

action - (action 2 instantons)

$\left\langle\mathrm{S}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}>\right\rangle_{\text {long }} /\left\langle\mathrm{S}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}>\right\rangle_{\text {short }}$, different sublat., \log

Full integral over one dominant thimble:

 results (1)

The form of dominant saddle is taken from classical MC for instanton gas

Full integral over one dominant thimble: results (2)

12×12 lattice, momentum 0,1 thimble $\mathrm{HMC}, \beta=20, \mathrm{U}=5.0$

12×12 lattice, momentum 0 , full QMC (ising fields), $\beta=20, \mathrm{U}=5.0$

Integral over just one thimble attached to the «dominant» saddle randomly picked up from the peak of instanton number distribution, provides us with almost entirely correct information on mass gap.
Saddle is generated from simple classical MC (grand canonical MC for instanton gas), which doesn't have the sign problem. The reason for the success is the increasing sharpness of the distribution of instantons once we approach the thermodynamic limit.

Applications for other systems: square lattice Hubbard model

Square lattice Hubbard m / k odel features not only localized instantons but also domain walls as saddles points

Insulator survives until zero U at zero temperature:

Further perspectives: complex instantons at finite chemical potential

$$
\begin{gathered}
U=3.8 \kappa \\
\mu=\kappa
\end{gathered}
$$

Distribution of actions:

Summary

1) Physically, instanton gas model corresponds to increasingly localized spins, distributed through the lattice, with weak interaction between them.
2) No long-range order, but increasing local AFM interactions.
3) Good agreement with exact QMC for the spectral functions everywhere except of the close vicinity of the Dirac point.
4) Instanton gas approximation provides the high accuracy prediction for the structure of the dominant saddle point.

Note: AFM order disappears anyway away of half filling (if chemical potential is larger than the mass gap) thus the accuracy in its description is not that important. However, local AFM correlations remain. Thus it might be a good approximation to study the case of finite chemical potential
5) In order to describe the appearance of the long range AFM order, it is enough to compute the integral over just one dominant thimble, predicted by the instanton gas approximation.

Further perspectives: other models, complex instantons at finite chemical potential

Backup slide: numerical check of the validity of the instanton gas model
 $6 \times 6 \times 512, \alpha=0.99, \beta=20.0, U=2.0$
 Dependence on the step in Euclidean time:

Dependence on the system size:

Dependence on the inverse temperature:
$\mathrm{Nt}=512$ and $\mathrm{N}_{\mathrm{t}}=1024, \mathrm{U}=2.0, \alpha=0.99$

