Field, current, and charge distribution in a pure gauge

SU(3) flux tube

M. Baker, V. Chelnokov, L. Cosmai, F. Cuteri, A. Papa

XVth Quark Confinement and Hadron Spectrum conference
Stavanger, 2022



Outline

@ Flux tubes on the lattice

© Subtraction procedure

© Field derivatives: currents and charges

@ Continuum scaling and the choice of smearing step

© Results

@ Conclusions

Field, current, and charge in a flux tube

Stavanger | 2022

1

/ 2
/ 20



Flux tubes on the lattice

o The chromoelectric field between a static quark and an antiquark
forms tube-like structures connecting them. This creates a linear
confining potential.

o The field distributions can be extracted from the lattice simulations,
and used to visualize the flux tube, and study its structure.

We work at zero temperature in a quenched theory without dynamic
quarks and a standard Wilson gauge action.
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The system has cylindrical symmetry, so we can limit ourselves to studying
just the (x7, z¢) plane.
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Fields in SU(3) gauge theory
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Simulation details

Simulations are done with a modified version of the MILC code.

To improve the signal-to-noise ratio a smearing procedure was applied:

o one step of 4-dimensional hypercubic smearing on the temporal links
(HYPt)

o Nyypsq steps of hypercubic smearing restricted to the three spatial
directions (HYP3d)

Results:
o Chromomagpnetic field is compatible with zero
o Longitudinal chromoelectric field shows a tube-like structure

o Transverse chromoelectric field is smaller than longitudinal but
nonzero
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Simulation results: longitudinal field
B =6.240, d = 8a = 0.511 fm
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Simulation results: transverse field
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Subtraction procedure

We expect that the full field is a sum of two parts: perturbative part which
behaves like an electrostatic field, and nonperturbative part that forms the
flux tube

B = BC 4 B
To separate these fields following assumptions are made:
o ECisa potential field (6 x EC = 0),
o ENP is purely longitudinal (Ezl/\IP =0),
o both E€ and ENP are zero at large transverse separations from the
quark-antiquark axis.

These assumptions, together with the calculated values of E, uniquely
determine the field parts.
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Subtraction procedure: perturbative part

B =6.240, d = 8a = 0.511 fm
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Subtraction procedure: nonperturbative part

B =6.240, d = 8a = 0.511 fm
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Field derivatives

Considering that, in our case, the fields are time-independent, and B=0,
nonzero derivatives of the fields

allow one to write the force density fas

fzpel'E+jmagXE-
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Field derivatives

pa=V-E=V-EC+V.EY = )01 P
Since the nonperturbative field is purely longitudinal

Lo 0
V‘ENP:—ENP,
ox °

We expect the flux tube to be constant in the longitudinal direction, so
pgp should be close to zero.

g = ¥ x = ¥ x B 49 x BN = JAP

mag

Due to the rotational symmetry, in our case, the only nonzero component
of Jmag is (Jmag)- winding around the quark-antiquark axis.
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Smearing as an effective renormalization

The connected field operator that we use undergoes a nontrivial
renormalization , depending on both x; and x;, which has to be taken into
account if we want to reach the continuum limit.

& Battelli, Bonati (2019)

Our smearing procedure effectively works as a renormalization, restoring
the continuum scaling. To check it we perform simulations on three
lattices corresponding to the same physical quark-antiquark distance

d = 0.512 fm, but having different lattice steps a.
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Optimal number of smearing steps

The optimal number of smearing steps depends on
o Observable that we are interested in
o Coordinates x; and z; (large coordinates require more smearing steps)

In general, scaling seems to be better at the maximum of the observable.
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Electric charge distribution
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Magnetic current distribution
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Confining force

Let us cut our space in two by a plane y = 0, that contains the
quark-antiquark line.

F:/ 37 Jpag X ENY =

>0
d [e's)
= — éy/ dxl/ dxtmthP(:Jcl,a:t) = —¢é,F
0 0

Force F acts perpendicular to the cut plane “squeezing” the flux tube. We

estimate this force and compare it with different estimations of the string
tension.
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String tension

String tension o can be estimated from the integration of the energy of
the nonperturbative field ENP over the transverse cross-section going
through the midpoint of the flux tube

S /d2 d2/2 ,2¢))?

. / dz, ¢ (NP (d/2, 1))?

An alternative approach would be to estimate the string tension from the
nonperturbative field at the position of the quark

o0 = gE.(0) .

Finally, one can compare these results with /ons = 0.464 GeV used in
setting the physical scale for our simulations & Necco, Sommer (2002)
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Confining force

B VF [GeV] o [GeV] /o [GeV]  /os [GeV]
6.240 0.4859(4)"6%  0.4742(12) 0.56353(81)

6.544 0.5165(8)T51  0.4692(16)  0.5962(38) 0.464
6.769 0.5297(22)"337  0.4672(49)  0.617(16)
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Conclusions

o The chromoelectric field created by a static quark-antiquark pair can be
separated into zero-curl perturbative and longitudinal nonperturbative parts,
where the nonperturbative part results in long-range linear behavior of the
quark-antiquark potential and can be identified as the flux tube.

o Anisotropic smearing can be used to both improve the signal-to-noise ratio
and to act as an effective renormalization. The optimal amount of smearing
depends on the observable and the position at which the field is measured.

o The perturbative chromoelectric charge density is concentrated around the
sources, while the nonperturbative part is close to zero (assumed to go to
zero in the continuum limit).

o The chromomagnetic current density has a nonzero continuum limit. The
Lorentz force arising from the interaction of the current with the
chromoelelectric field creates a force that acts towards the axis of the tube.
Integrating this force over a half-space gives a measure of confinement of
the tube in the transverse direction, that is numerically compatible with the
string tension.
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