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Flux tubes on the lattice

◦ The chromoelectric field between a static quark and an antiquark
forms tube-like structures connecting them. This creates a linear
confining potential.

◦ The field distributions can be extracted from the lattice simulations,
and used to visualize the flux tube, and study its structure.

We work at zero temperature in a quenched theory without dynamic
quarks and a standard Wilson gauge action.

L β = 6/g2 a [fm] d

48 6.240 0.0639 8a = 0.511 fm
48 6.544 0.0426 12a = 0.511 fm
48 6.769 0.0320 16a = 0.511 fm
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Geometry
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The system has cylindrical symmetry, so we can limit ourselves to studying
just the (xl, xt) plane.
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Fields in SU(3) gauge theory
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Simulation details

Simulations are done with a modified version of the MILC code.

To improve the signal-to-noise ratio a smearing procedure was applied:

◦ one step of 4-dimensional hypercubic smearing on the temporal links
(HYPt)

◦ NHYP3d steps of hypercubic smearing restricted to the three spatial
directions (HYP3d)

Results:

◦ Chromomagnetic field is compatible with zero

◦ Longitudinal chromoelectric field shows a tube-like structure

◦ Transverse chromoelectric field is smaller than longitudinal but
nonzero
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Simulation results: longitudinal field
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Simulation results: transverse field
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Subtraction procedure

We expect that the full field is a sum of two parts: perturbative part which
behaves like an electrostatic field, and nonperturbative part that forms the
flux tube

E⃗ = E⃗C + E⃗NP

To separate these fields following assumptions are made:

◦ E⃗C is a potential field (∇⃗ × E⃗C = 0),

◦ E⃗NP is purely longitudinal (ENP
y = 0),

◦ both E⃗C and E⃗NP are zero at large transverse separations from the
quark-antiquark axis.

These assumptions, together with the calculated values of E⃗, uniquely
determine the field parts.
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Subtraction procedure: perturbative part

β = 6.240, d = 8a = 0.511 fm
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Subtraction procedure: nonperturbative part

β = 6.240, d = 8a = 0.511 fm
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Field derivatives

Considering that, in our case, the fields are time-independent, and B⃗ = 0,
nonzero derivatives of the fields

ρel = ∇⃗ · E⃗ ,

J⃗mag = ∇⃗ × E⃗ ,

allow one to write the force density f⃗ as

f⃗ = ρel · E⃗ + J⃗mag × E⃗ .
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Field derivatives

ρel = ∇⃗ · E⃗ = ∇⃗ · E⃗C + ∇⃗ · E⃗NP = ρCel + ρNP
el

Since the nonperturbative field is purely longitudinal

∇⃗ · E⃗NP =
∂

∂x
ENP

x ,

We expect the flux tube to be constant in the longitudinal direction, so
ρNP
el should be close to zero.

J⃗mag = ∇⃗ × E⃗ = ∇⃗ × E⃗C + ∇⃗ × E⃗NP = J⃗ NP
mag

Due to the rotational symmetry, in our case, the only nonzero component
of J⃗mag is (Jmag)z winding around the quark-antiquark axis.
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Smearing as an effective renormalization

The connected field operator that we use undergoes a nontrivial
renormalization , depending on both xl and xt, which has to be taken into
account if we want to reach the continuum limit. Battelli, Bonati (2019)

Our smearing procedure effectively works as a renormalization, restoring
the continuum scaling. To check it we perform simulations on three
lattices corresponding to the same physical quark-antiquark distance
d = 0.512 fm, but having different lattice steps a.
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Optimal number of smearing steps

The optimal number of smearing steps depends on

◦ Observable that we are interested in

◦ Coordinates xl and xt (large coordinates require more smearing steps)

In general, scaling seems to be better at the maximum of the observable.
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Electric charge distribution
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Magnetic current distribution
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Confining force

Let us cut our space in two by a plane y = 0, that contains the
quark-antiquark line.

F⃗ =

∫
y>0

d3r⃗ J⃗mag × E⃗NP =

= −2êy

∫ d

0
dxl

∫ ∞

0
dxt xtf

NP(xl, xt) ≡ −êyF

Force F⃗ acts perpendicular to the cut plane “squeezing” the flux tube. We
estimate this force and compare it with different estimations of the string
tension.
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String tension

String tension σ can be estimated from the integration of the energy of
the nonperturbative field E⃗NP over the transverse cross-section going
through the midpoint of the flux tube

σint =

∫
d2xt

(ENP
x (d/2, xt))

2

2
=

= π

∫
dxt xt (E

NP
x (d/2, xt))

2 .

An alternative approach would be to estimate the string tension from the
nonperturbative field at the position of the quark

σ0 = gEx(0) .

Finally, one can compare these results with
√
σNS = 0.464 GeV used in

setting the physical scale for our simulations Necco, Sommer (2002)
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Confining force

β
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√
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√
σ0 [GeV]

√
σNS [GeV]

6.240 0.4859(4)+645 0.4742(12) 0.56353(81)

6.544 0.5165(8)+611
−214 0.4692(16) 0.5962(38) 0.464

6.769 0.5297(22)+547
−322 0.4672(49) 0.617(16)
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Conclusions

◦ The chromoelectric field created by a static quark-antiquark pair can be
separated into zero-curl perturbative and longitudinal nonperturbative parts,
where the nonperturbative part results in long-range linear behavior of the
quark-antiquark potential and can be identified as the flux tube.

◦ Anisotropic smearing can be used to both improve the signal-to-noise ratio
and to act as an effective renormalization. The optimal amount of smearing
depends on the observable and the position at which the field is measured.

◦ The perturbative chromoelectric charge density is concentrated around the
sources, while the nonperturbative part is close to zero (assumed to go to
zero in the continuum limit).

◦ The chromomagnetic current density has a nonzero continuum limit. The
Lorentz force arising from the interaction of the current with the
chromoelelectric field creates a force that acts towards the axis of the tube.
Integrating this force over a half-space gives a measure of confinement of
the tube in the transverse direction, that is numerically compatible with the
string tension.
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