The static energy of a quark-antiquark pair from Laplacian eigenmodes

R. Höllwieser, F. Knechtli, M. Peardon

University of Wuppertal, Trinity College Dublin

Lattice QCD

- ► link variables $U_{\mu}(x) = \exp(i \int_{x}^{x+a\hat{\mu}} A_{\mu} dx^{\mu})$
- Wilson line $U_s(\vec{x}, \vec{y}) = \exp(i \int_{\vec{x}}^{\vec{y}} A_\mu dx^\mu) = \prod U_\mu$
- path-ordered product of link variables, on-/off-axis
- ▶ plaquette, Wilson loop W(R,T), static $Q\bar{Q}$ pair

Motivation Realization Simulations Improvement Results Conclusions & Outlook Motivation Improvement <td

- calculate the static potential energy with high resolution
 - matching the lattice QCD potential with the perturbative potential to determine Λ_{MS} in Fourier space, *e.g.*, Karbstein et al. (2014)
 - observation of string breaking in QCD, *e.g.*, Bali et al. (2008), Bulava et al. (2019)
- \Rightarrow we have to work with off-axis separated quarks
- ► the spatial part of the Wilson loop has to go over stair-like paths through the lattice → not unique, computationally expensive
- $\Rightarrow\,$ alternative operator which ensures gauge covariance of the quark-anti-quark $Q(\vec{x})\bar{Q}(\vec{y})$ trial state
- required gauge transformation behavior:

 $U'_s(\vec{x}, \vec{y}) = G(\vec{x})U_s(\vec{x}, \vec{y})G^{\dagger}(\vec{y})$

Laplacian Eigenmodes

Consider the 3D covariant lattice Laplace operator:

$$\Delta V = \frac{1}{a^2} [U_x^{\dagger}(x-a,y,z)V(x-a,y,z) - 2V(\vec{x}) + U_x(\vec{x})V(x+a,y,z) + U_y^{\dagger}(x,y-a,z)V(x,y-a,z) - 2V(\vec{x}) + U_y(\vec{x})V(x,y+a,z) + U_z^{\dagger}(x,y,z-a)V(x,y,z-a) - 2V(\vec{x}) + U_z(\vec{x})V(x,y,z+a)]$$

- transformation behavior: $\Delta' = G(\vec{x})\Delta G^{\dagger}(\vec{y})$
- consider $V(\vec{x})$ an eigenvector: $\Delta V(\vec{x}) = \lambda V(\vec{x})$

$$\begin{aligned} \Delta' V'(\vec{x}) &= \lambda V'(\vec{x}) \\ G(\vec{x}) \Delta G^{\dagger}(\vec{x}) V'(\vec{x}) &= \lambda V'(\vec{x}) \\ \Delta G^{\dagger}(\vec{x}) V'(\vec{x}) &= \lambda G^{\dagger}(\vec{x}) V'(\vec{x}) \end{aligned}$$

► V(x) and G[†](x)V'(x) are members of the same eigen-space

Static $Q\bar{Q}$ pair, Wilson loop alternative...

Realization

- idea taken from Neitzel et al. (2016) SU(2)
- SU(3): the eigenvalues are in general non-degenerate
- ► spatial Wilson line: $U'_s(\vec{x}, \vec{y}) = G(\vec{x})U_s(\vec{x}, \vec{y})G^{\dagger}(\vec{y})$ $V'(\vec{x})V'^{\dagger}(\vec{y}) = G(\vec{x})V(\vec{x})V^{\dagger}(\vec{y})G^{\dagger}(\vec{y})$
- ► Wilson loop of size $(R = |\vec{x} \vec{y}|) \times (T = |t_1 t_0|)$ $W(R, T) = U_t(\vec{x}; t_0, t_1)U_s(\vec{x}, \vec{y}; t_1)U_t^{\dagger}(\vec{y}; t_0, t_1)U_s^{\dagger}(\vec{x}, \vec{y}; t_0)$

 $\rightarrow \ U_t(\vec{x}; t_0, t_1) V_j(\vec{x}, t_1) V_j^{\dagger}(\vec{y}, t_1) U_t^{\dagger}(\vec{y}; t_0, t_1) V_i(\vec{y}, t_0) V_i^{\dagger}(\vec{x}, t_0)$

R. Höllwieser, The static potential from Laplacian eigenmodes

Motivation Realization Simulations Improvement Results Conclusions & Outlook Simulations <t

- ► $24^3 \times 48$, $\beta = 5.3$, $N_f = 2$, $\kappa = 0.13270$, a = 0.0658 fm
- (on-axis) Wilson loops from 4646 measurements, 4D HYP
- Laplace states from 1161 measurements, 20 APE (0.5) for Lanczos, 1 4D HYP for temporal Wilson lines
- static potential $aV(R) = \lim_{T \to \infty} \log[W(R,T)/W(R,T+1)]$
- at R = 12a the force between $Q\bar{Q}$ must vanish due to symmetry
- more eigenvectors gives earlier plateau and increase precision

R. Höllwieser, The static potential from Laplacian eigenmodes

Gaussian profiles

$$\begin{split} W_{kl}(R,T) &= \sum_{i,j}^{N_v} N_{kl}(\lambda_i,\lambda_j) \sum_{\vec{x},t_0} \\ \left\langle V_i^{\dagger}(\vec{x},t_0) U_t(\vec{x};t_0,t_1) V_j(\vec{x},t_1) V_j^{\dagger}(\vec{y},t_1) U_t^{\dagger}(\vec{y};t_0,t_1) V_i(\vec{y},t_0) \right\rangle \end{split}$$

Gaussian profile functions:

 $N_{kl}(\lambda_i, \lambda_j) = \exp(-\lambda_i^2/2\sigma_k^2) \exp(-\lambda_j^2/2\sigma_l^2)$ using 7 different σ values

 \Rightarrow prune W_{kl} using 3 most significant singular vectors u_i at t_0

... improves stability and keeps useful operators

 \Rightarrow pruned ("optimal") profiles $u_{i,j} \exp(-\lambda^2/\sigma_j^2)$

R. Höllwieser, The static potential from Laplacian eigenmodes

Improved Results

Solve generalized eigenvalue problems for

correlation matrix of Wilson loops with 3 spatial smearing levels

Results

• Laplace trial states W_{kl} (or pruned version $\bar{W}_{ij} = u_i^{\dagger} W_{kl} u_j$)

I on-axis Wilson loops for 3 spatial smearing levels (0,10,20HYP) are equally expensive as the calculation of 100 Laplacian eigenvectors and Laplace states with 3 Gaussian profiles including off-axis distances!

provement

Fractional overlaps with the ground state

R	$\#\lambda=1$	8	64	200	Gauss	Wloop	HYP2
1	0.773(3)	0.945(1)	0.970(1)	0.982(1)	0.993(1)	0.921(1)	0.983(1)
2	0.747(4)	0.929(2)	0.964(1)	0.987(1)	0.989(1)	0.891(1)	0.978(1)
3	0.723(4)	0.878(2)	0.984(2)	0.986(1)	0.988(1)	0.867(1)	0.972(2)
4	0.726(5)	0.874(3)	0.921(2)	0.984(2)	0.986(2)	0.841(2)	0.965(3)
5	0.637(6)	0.871(4)	0.979(3)	0.982(3)	0.983(3)	0.813(2)	0.956(5)
6	0.629(6)	0.869(4)	0.978(4)	0.980(3)	0.981(3)	0.793(3)	0.948(6)
7	0.619(7)	0.869(5)	0.977(4)	0.979(4)	0.987(4)	0.772(3)	0.934(7)
8	0.598(8)	0.862(6)	0.972(5)	0.970(4)	0.964(4)	0.745(4)	0.953(8)
9	0.572(8)	0.857(6)	0.960(5)	0.934(4)	0.963(3)	0.708(4)	0.947(9)
10	0.540(9)	0.840(7)	0.965(5)	0.931(5)	0.95(1)	0.671(5)	0.94(1)
11	0.426(9)	0.807(7)	0.943(6)	0.93(1)	0.956(9)	0.649(4)	0.93(1)
12	0.33(7)	0.79(2)	0.94(1)	0.92(1)	0.95(1)	0.64(2)	0.92(1)

t-average over mass-plateau region of

$$\frac{W(R,t)}{W(R,t_0)} \frac{\cosh\left(\left(\frac{T}{2} - t_0\right)m_0\right)}{\cosh\left(\left(\frac{T}{2} - t\right)m_0\right)}$$

Motivation

Conclusions & Outlook

- $\checkmark\,$ alternative operator for a static quark-anti-quark pair based on Laplacian eigenmodes
- ✓ improved version (several eigenvectors weighted with Gaussian profiles) gives earlier plateau and better signal
- ✓ much higher resolution of the potential energy as off-axis distances basically come "for free"
- ✓ implementation of static-light (charm) correlator using "perambulators" $V(t_1)D^{-1}V(t_2)$ from distillation framework (quark field smearing via projection $\psi \to VV^{\dagger}\psi$) of our working group, see Knechtli et. al (2022), ⇒ bonus slide
- putting together building blocks for observation of string breaking in QCD (mixing matrix of static and light quark propagators)
- also working on hybrid static potentials (hybrid meson masses), instead of "gluonic handles" (excitations) use derivatives of V

Acknowledgements

THANK YOU

F. Knechtli, T. Korzec, M. Peardon, J.-A. Urrea-Niño

Bergische Universität Wuppertal, Trinity College Dublin

Gauss Centre for Supercomputing e.V.

Leibniz Supercomputing Centre

Extra: Static quark line, SVD, GEVP

SVD: W = UDV; U, V unitary, columns are orthonormal bases

• GEVP: $W(t)v_k = \rho_k W(t_0)v_k$, ρ_k give effective energies

• u_i or v_k can be used to get 'optimal' profiles for energy states

Bonus: Static-light (charm) meson

$$C(t) = -\sum_{t_0,i,j} \left\langle \operatorname{tr}_d \{ [V_i^{\dagger} D^{-1} V_j](t_0 + t, t_0) P_+ \} \right.$$
$$\sum_{\vec{x}} V_j^{\dagger}(\vec{x}, t_0) U_t(\vec{x}; t_0, t_0 + t) V_i(\vec{x}, t_0 + t) \left. \right\rangle$$

- with light (charm) perambulators $V^{\dagger}D^{-1}V$
- HYP smearing of temporal links in U_t removes free energy

R. Höllwieser, The static potential from Laplacian eigenmodes