Studying the Chiral Magnetic Effect in Pb+Pb and Xe+Xe collisions using the AVFD model with ALICE

Collaborated with Panos Christakoglou, Joey Staa The European Physical Journal C volume 81, Article number: 717 (2021)

The XVth Quark Confinement and the Hadron Spectrum Conference, 5/8/2022

Chiral magnetic effect

• The strong interaction

• CME: The generation of electric current along an external magnetic field induced by chirality imbalance.

 θ term: energy dependent, becomes non-negligible in QGP

't Hooft vacuum Violating P, T The term leads to imbalance of the densities of left-handed and right-handed chiral fermions

Chiral magnetic effect

• The strong interaction

• CME: The generation of electric current along an external magnetic field induced by chirality imbalance.

 θ term: energy dependent, becomes non-negligible in QGP

> The term leads to imbalance of the densities of left-handed and right-handed chiral fermions

Chiral magnetic effect

Aim of this study

ALICE and STAR have both done extensive searches for CME \bullet

CME 1.02 Au+Au 200 GeV 0.2 Ratio 0.98 0. 0.96 0.94 AM12 2EP. PGOUDI -0.1FE FE 0.2~2 GeV/c 0.2~1 GeV/c SE SE Δη=0.1 Δη=0.3

fCME upper limit for Mix Harmonic and ESE method at ALICE

[1] Qiu, Shi (ALICE): Track D Monday 16:10-16:40

fCME for Au+Au shows some hint of [1] STAR, PRL 128 (2022) 092301 [2] Feng, FW, et al., PRC 105 (2022) 024913

- The goal of this study is to extract the values that control the CME signal and the background in the AVFD model
- The parameter that dictates the CME signal is the value of the **axial current density** (n_5/s)
- The parameter that governs the background is the **local charge conservation**, which is the amount of positive and negative charged partners emitted from the same fluid element relative to the total multiplicity of the event

Ratio>background estimate => CME

Isobar run shows measurements consistent with background

- [1] STAR arXiv:2109.00131
- [2] Feng, FW, et al., PRC 105 (2022) 024913

Anomalous Viscous Fluid Dynamics model (AVFD) ^[1,2]

- Describe the transport of the light fermions in the hydrodynamic framework and to account for anomaly.
- Simulation process in AVFD
 - SuperMC: generates fluctuating initial conditions using the Monte-Carlo Glauber model or MCKLN model
 - **VISHNew:** solves viscous hydrodynamic equations with given initial conditions from SuperMC

•
$$J^{\mu}_{\chi} = n_{\chi}u^{\mu} + v^{\mu}_{\chi} + \chi \frac{N_c Q_f}{4\pi^2} \mu_{\chi} B^{\mu}$$
, $\chi = \pm$ (RH/LH Chirality)

- ISS: generate sets of momenta and positions for actual particles emitted at the end of the hydrodynamic simulation
- **Osu2u:** synchronize all particles by propagating particles backwards in time to prepare for UrQMD
- UrQMD: hadron cascade simulation

[1] Annals of Physics 394 (2018) 50-72[2] Chinese Physics C Vol. 42, No. 1 (2018) 011001

Anomalous Viscous Fluid Dynamics model (AVFD)

- Diffusion effect (σ): controls how fast the lacksquarediffusion process transports charges around under the presence of density gradient
- Relaxation time (τ_r) : controls the time scale that \bullet is needed to build up the "diffusion current" in response to the density gradient.
 - Small relaxation time \rightarrow faster build up of diffusion current \rightarrow stronger diffusion effect \rightarrow suppressed CME

Red dot is the default value used in this study a_1 represents **CME-induced** charge separation

Anomalous Viscous Fluid Dynamics model (AVFD)

Shi Qiu

Anomalous Viscous Fluid Dynamics model (AVFD)

- Initial conditions for the fermion charge densities (chirality imbalance), namely the initial four-current $J^{\mu}_{\chi,f}(\tau = \tau_0)$ for each flavour f as well as chirality χ .
- One can set for each flavor the initial vector and axial charge densities $n = J_R^0 + J_L^0$ and $n_5 = J_R^0 J_L^0$. One expects $J_{CME}^{\mu} = C_A \mu_5 B^{\mu} \propto n_5$.

Shi Qiu

Calibrating the AVFD model

- Tune the baseline sample (no CME) to reproduce $dN/d\eta$, pion, kaon, proton p_T spectra and v_2 (elliptic flow) measured in ALICE Pb-Pb and Xe-Xe data
- Nucleon parameters for Pb and Xe from AVFD authors
- Use Gaussian nucleon distribution
- Key parameters for hydro:

AVFD hydro configInitial time T_0 (fm/c)0.6Decoupling energy density E_{dec} (GeV/fm³)0.18Shear viscosity η/s 0.08Bulk viscosity C ($\xi/s = C \times (\xi/s)_{min}$)0

Xe-Xe as an example

Nikhef

B field simulated at $t_0 = 0$

- B field in Pb-Pb more than 1.5 times larger than Xe-Xe
- Lifetime of B field in both system was set to a rather conservative value 0.2 fm/c

The $\Delta\delta$ and $\Delta\gamma$ observable for CME

• Charge dependent correlator: $\delta_{\alpha\beta} = \langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle, \quad \gamma_{\alpha\beta} = \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{RP}) \rangle$

where α , $\beta = \pm$ refer to charge.

- $\delta_{\alpha\beta}$ sensitive to correlations independent to RP (e.g. resonance decay, non-flow, jets)
- $\gamma_{\alpha\beta}$ sensitive to RP dependent background (e.g. flowing cluster, elliptic flow, v_1^2 fluctuation)
- ALICE previous measurement showed that $\Delta \gamma$ and $\Delta \delta$ significantly > 0. Indicating charge separation.

The $\Delta\delta$ and $\Delta\gamma$ observable for CME

• Charge dependent correlator: $\delta_{\alpha\beta} = \langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle, \quad \gamma_{\alpha\beta} = \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{RP}) \rangle$

where α , $\beta = \pm$ refer to charge.

- $\delta_{\alpha\beta}$ sensitive to correlations independent to RP (e.g. resonance decay, non-flow, jets)
- $\gamma_{\alpha\beta}$ sensitive to RP dependent background (e.g. flowing cluster, elliptic flow, v_1^2 fluctuation)
- ALICE previous measurement showed that $\Delta \gamma$ and $\Delta \delta$ significantly > 0. Indicating charge separation.
- However, $\Delta\delta$ and $\Delta\gamma$ are heavily contaminated by local charge conservation (LCC) and resonance decays, mainly coupled with elliptic flow (noted as v_2)
 - e.g. $\rho^0 \rightarrow \pi^+ \pi^-$, more OS pairs align in the $\Psi_{\rm RP}$ than B direction
- Similar value of γ observed in small system (no CME expected, pPb) confirming that the background is huge

Nikhef

$\Delta \delta_1$ and $\Delta \gamma_{1,1}$ for Pb-Pb and Xe-Xe

Approximate 100k events per centrality bin

Shi Qiu

Parametrization

• For each centrality bin: • $\Delta \delta_1 = c_2 \cdot (n_5/s)^2 + c_1 \cdot (n_5/s) + b_1 \cdot (LCC)$ + b_0 • $\Delta \gamma_{1,1} = e_2 \cdot (n_5/s)^2 + e_1 \cdot (n_5/s) + d_1 \cdot (LCC)$ + d_0 • 0 - -0.001 - 0• 0 - -0.001 - 0

0.0015

0.0005

0

^{1,1} کړ

Final results

- The best fitted value of LCC and n_5 /s can reproduce $\Delta\delta$ and $\Delta\gamma$ nicely
- A fit with a constant function for n₅/s indicates that:
 - For Xe-Xe, avg % of n_5/s is 0.011 \pm 0.005. Compatible with zero
 - For Pb-Pb, avg % of n_5/s is 0.034 \pm 0.003. Significantly above background only scenario

Conclusion

- This parametrisation allowed for the estimation of the values of both the LCC percentage and n5/s needed to describe quantitatively
- The measurements in Xe–Xe are consistent with a background only scenario
- The results of Pb–Pb collisions require n5/s with significantly non-zero values

THANKS

Shi Qiu

18

Extra Slides

B

Nikhef Jamboree, 10th 5/2022

Understanding shifting of $\Delta \delta_1$ and

• Such results follow the expecatation. Expand $\delta_{\alpha\beta}$ and $\gamma_{\alpha\beta}$:

- $\langle \cos(\varphi_{\alpha} \mp \varphi_{\beta} 2\Psi_{\rm RP}) \rangle = \cdots = \langle \cos \Delta \varphi_{\alpha} \cos \Delta \varphi_{\beta} \rangle$ $-\langle \sin \Delta \varphi_{\alpha} \sin \Delta \varphi_{\beta} \rangle = \dots$
- For a fixed LCC, $\Delta\delta$ is higher for Xe-Xe than Pb-Pb
 - the radial flow between these two systems is similar
 - the charge multiplicity is 60-70% higher -0.001 for Pb-Pb leading to faster dilution of the correlations induced by the LCC mechanism in the larger system

Pb-Pb calibration

Shi Qiu

Nikhef