Effective quarks and gluons in QCD

María Gómez-Rocha
Universidad de Granada \&
Instituto Carlos I de Físca Teórica y Computacional

in collaboration with:
S. D. Głazek, K. Serafin (U. Warsaw), J. More (IIT Bombay), and Juan José Gálvez Viruet (U. Granada)

XVth Quark Confinement and the Hadron Spectrum

1. Hadrons in terms of quarks and gluons and their dynamics
2. Hadrons in terms of quarks and gluons and their dynamics
3. QCD at different scales: from asymptotic freedom to confinement
high-energy wave
low-energy wave

Motivation

1. Hadrons in terms of quarks and gluons and their dynamics
2. QCD at different scales: from asymptotic freedom to confinement high-energy wave

3. Hamiltonian of QCD is complicated
\rightarrow It needs regularization and has counterterms
\rightarrow How to deal with an infinite number of particles??
\rightarrow Starting from QCD, derive an effective Hamiltonian

Hadronic states in QCD

Every state in QCD is a superposition of infinitely many Fock components

$$
\begin{gathered}
\left|\Psi_{\text {meson }}\right\rangle=c_{1}|q \bar{q}\rangle+c_{2}|q \bar{q} g\rangle+c_{3}|q \bar{q} g g\rangle+c_{4}|q \bar{q} q \bar{q} g g\rangle+\ldots \\
P_{|q \bar{q}\rangle}=\left|\left\langle q \bar{q} \mid \Psi_{\text {meson }}\right\rangle\right|^{2}=c_{1}^{2}
\end{gathered}
$$

Masses are given by the eigenvalues of Hamiltonian operator acting on the Fock space

$$
H_{Q C D}\left|\Psi_{\text {meson }}\right\rangle=E_{n}\left|\Psi_{\text {meson }}\right\rangle
$$

E_{n} are the energy levels of the system, i.e. masses of hadrons Problem: In practice it is not feasible

The method of calculation

Renormalization Group Procedure for Effective Particles

The method of calculation

Originally Similarity Renormalization Group
[S.D. Głazek, K.G. Wilson, PRD49, PRD57]
Lagrangian density of $\mathrm{QCD} \mathcal{L}_{\mathrm{QCD}}=\bar{\psi}(i \not D-m) \psi-\frac{1}{2} \operatorname{tr} F^{\mu \nu} F_{\mu \nu}$

1. Canonical Hamiltonian Use front-form dynamics:

- $\mathcal{L}_{\mathrm{QCD}} \rightarrow \mathcal{T}_{\mathrm{QCD}}^{\mu \nu} \rightarrow H_{\mathrm{QCD}}=\int_{\mathrm{x}^{+}=0} \mathcal{H}_{\mathrm{QCD}}(\mathrm{x}) d \mathrm{x}, \quad A^{+}=0$

$$
k^{+}=k^{0}+k^{3}, \quad k^{-}=k^{0}-k^{3}, \quad \vec{k}^{\perp}=\left(k^{1}, k^{2}\right) ; \quad x=k^{+} / P^{+}
$$

2. Regularization Interaction vertices:

- UV and small-x cutoff $\int d x d \kappa^{\perp} \rightarrow \int d k^{+} d \kappa^{\perp} r_{\delta}(x) r_{\Delta}\left(\kappa^{\perp}\right)$ $\lim _{\delta \rightarrow 0} r_{\delta}(x)=1, \lim _{\Delta \rightarrow \infty} r_{\Delta}(x)=1$

See poster by J.J. Gálvez Viruet for reg. with gluon mass
3. Renormalization

Scale parameter λ introduced by RGPEP equation

$$
H_{0} \quad \rightarrow \quad H_{\lambda}
$$

The method of calculation: RGPEP

Renormalization group procedure for effective particles
Originally Similarity Renormalization Group
[S.D. Głazek, K.G. Wilson, PRD49, PRD57]
Change of basis through a similarity transformation

$$
H_{\lambda}=U_{\lambda} H_{0} U_{\lambda}^{\dagger}, \quad U_{\lambda}\left|\psi_{0}\right\rangle=\left|\psi_{\lambda}\right\rangle, \quad H_{0}\left|\psi_{0}\right\rangle=H_{\lambda}\left|\psi_{\lambda}\right\rangle=E\left|\psi_{0}\right\rangle
$$

U_{λ} depends on an energy-scale parameter λ preserves the eigenvalues H_{λ} satisfies

$$
\frac{d H_{\lambda}}{d \lambda^{-4}}=\left[G_{\lambda}, H_{\lambda}\right], \text { where } G_{\lambda} \text { is a generator }
$$

The method of calculation: RGPEP

Renormalization group procedure for effective particles
Originally Similarity Renormalization Group
[S.D. Głazek, K.G. Wilson, PRD49, PRD57]
Change of basis through a similarity transformation

$$
H_{\lambda}=U_{\lambda} H_{0} U_{\lambda}^{\dagger}, \quad U_{\lambda}\left|\psi_{0}\right\rangle=\left|\psi_{\lambda}\right\rangle, \quad H_{0}\left|\psi_{0}\right\rangle=H_{\lambda}\left|\psi_{\lambda}\right\rangle=E\left|\psi_{0}\right\rangle
$$

U_{λ} depends on an energy-scale parameter λ preserves the eigenvalues H_{λ} satisfies

$$
\frac{d H_{\lambda}}{d \lambda^{-4}}=\left[G_{\lambda}, H_{\lambda}\right], \text { where } G_{\lambda} \text { is a generator }
$$

Example: [Gomez-Rocha, Arriola, PLB 800 (2020), APP Sup. 14 (2021)] Evolution of a model potential $V\left(p, p^{\prime}\right)$

The method of calculation: RGPEP

Renormalization group procedure for effective particles
Originally Similarity Renormalization Group
[S.D. Głazek, K.G. Wilson, PRD49, PRD57]
Change of basis through a similarity transformation

$$
H_{\lambda}=U_{\lambda} H_{0} U_{\lambda}^{\dagger}, \quad U_{\lambda}\left|\psi_{0}\right\rangle=\left|\psi_{\lambda}\right\rangle, \quad H_{0}\left|\psi_{0}\right\rangle=H_{\lambda}\left|\psi_{\lambda}\right\rangle=E\left|\psi_{0}\right\rangle
$$

U_{λ} depends on an energy-scale parameter λ preserves the eigenvalues H_{λ} satisfies

$$
\frac{d H_{\lambda}}{d \lambda^{-4}}=\left[G_{\lambda}, H_{\lambda}\right], \text { where } G_{\lambda} \text { is a generator }
$$

Example: [Gomez-Rocha, Arriola, PLB 800 (2020), APP Sup. 14 (2021)] Evolution of a model potential $V\left(p, p^{\prime}\right)$

The method of calculation

Effective quanta
Creation and annihilation operators become effective

$$
a^{\dagger}|0\rangle=|g\rangle \quad \rightarrow \quad a_{\lambda}^{\dagger}|0\rangle=\left|g_{\lambda}\right\rangle \quad a_{\lambda}^{\dagger}=\mathcal{U}_{\lambda} a^{\dagger} \mathcal{U}_{\lambda}^{\dagger}
$$

They create/annihilate particles of type λ or of size $s=1 / \lambda$
$[\lambda]=$ energy \sim scale
$[s=1 / \lambda]=$ length \sim size
Hadrons in terms effective particles
Hadrons can be described in terms of effective particles of type λ

$$
\left|\Psi_{\text {meson } \lambda}\right\rangle=c_{1, \lambda}|q \bar{q}\rangle_{\lambda}+c_{2, \lambda}|q \bar{q} g\rangle_{\lambda}+c_{3, \lambda}|q \bar{q} g g\rangle_{\lambda}+c_{4, \lambda}|q \bar{q} q \bar{q} g g\rangle_{\lambda}+\ldots
$$

and describe from asymptotic freedom to bound states

RGPEP

Solve the RGPEP equation perturbatively

$$
\frac{d H_{\lambda}}{d \lambda^{-4}}=\left[\left[H_{f}, H_{P \lambda}\right], H_{\lambda}\right] \quad a_{\lambda}=\mathcal{U}_{\lambda} a \mathcal{U}_{\lambda}^{\dagger}
$$

perturbatively, order by order

$$
H_{\lambda}=H_{f}+g H_{1, \lambda}+g^{2} H_{2, \lambda}+g^{3} H_{3, \lambda}+\ldots
$$

$$
\begin{aligned}
\mathcal{H}_{f}^{\prime} & =0, \\
g \mathcal{H}_{\lambda 1}^{\prime} & =\left[\left[\mathcal{H}_{f}, g \mathcal{H}_{1 P \lambda}\right], \mathcal{H}_{f}\right], \\
g^{2} \mathcal{H}_{\lambda 2}^{\prime} & =\left[\left[\mathcal{H}_{f}, g^{2} \mathcal{H}_{2 P \lambda}\right], \mathcal{H}_{f}\right]+\left[\left[\mathcal{H}_{f}, g \mathcal{H}_{1 P \lambda}\right], g \mathcal{H}_{1 \lambda}\right], \\
g^{3} \mathcal{H}_{\lambda 3}^{\prime} & =\left[\left[\mathcal{H}_{f}, g^{3} \mathcal{H}_{3 P \lambda}\right], \mathcal{H}_{f}\right]+\left[\left[\mathcal{H}_{f}, g^{2} \mathcal{H}_{2 P \lambda}\right], g \mathcal{H}_{1 \lambda}\right]+\left[\left[\mathcal{H}_{f}, g \mathcal{H}_{1 P t \lambda}\right], g^{2} \mathcal{H}_{2 \lambda}\right],
\end{aligned}
$$

\rightarrow Integration produces functions with form factors

$$
e^{-\left(\mathcal{M}_{a}^{2}-\mathcal{M}_{b}^{2}\right)^{2} / \lambda^{4}}
$$

The concept of effective particles

Effective particles of type λ can change their relative motion kinetic energy through a single effective interaction by no more than about λ

$$
s_{c} \sim 1 / \Lambda_{Q C D}
$$

$s=1 / \lambda$
$f_{t}=e^{-\left(\mathcal{M}_{1}^{2}-\mathcal{M}_{2}^{2}\right)^{2} / \lambda^{4}}$

Figure adapted from Patryk Kubiczek

Asymptotic freedom

Example of third-order calculation

Example of 3rd-order calculation:

\rightarrow The three-gluon vertex:

$$
Y_{\lambda}=g H_{1 \lambda}+g^{3} H_{3 \lambda}
$$

\rightarrow We obtain the running coupling with the correct AF behavior:

$$
\Rightarrow g_{\lambda}=g_{0}-\frac{g_{0}^{3}}{48 \pi^{2}} N_{c} 11 \ln \frac{\lambda}{\lambda_{0}}, \quad[\mathrm{MGR}, \text { Głazek, PRD 92] }
$$

\rightarrow BUT: finite dependence on regularization

Example of 3rd-order calculation:

\rightarrow The three-gluon vertex:

$$
Y_{\lambda}=g H_{1 \lambda}+g^{3} H_{3 \lambda}
$$

\rightarrow We obtain the running coupling with the correct AF behavior:

$$
\Rightarrow g_{\lambda}=g_{0}-\frac{g_{0}^{3}}{48 \pi^{2}} N_{c} 11 \ln \frac{\lambda}{\lambda_{0}}, \quad[\mathrm{MGR}, \text { Głazek, PRD 92] }
$$

\rightarrow BUT: finite dependence on regularization \quad See poster by J.J. Gálvez Viruet

Bound states

Example of second-order calculation

Effective theory for heavy quarks

Heavy quarks make calculations much simpler
Heavy quarkonium is the simplest bound state
Assumptions

\star QCD with only quarks of heavy mass $m_{b}\left(4.18 \mathrm{GeV} / c^{2}\right), m_{c}\left(1.5 \mathrm{GeV} / c^{2}\right)$
\star No $Q \bar{Q}$ pair production (too heavy)

* 2nd-order perturbative RGPEP:

$$
H_{Q C D \lambda}=H_{f}+g H_{1, \lambda}+g^{2} H_{2, \lambda} \quad\left|\Psi_{\lambda}\right\rangle=\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle+\left|Q_{\lambda} \bar{Q}_{\lambda} g_{\lambda}\right\rangle
$$

\star Non relativistic limit $k / m_{Q} \rightarrow 0$ simplifies the equations

Structure of the eigenvalue problem

Gluon-mass ansatz

$$
\begin{aligned}
{\left[\begin{array}{ccc}
\cdots & \ldots & \ldots \\
\cdots & H_{f}+g^{2} H_{2, \lambda} & g H_{1, \lambda} \\
\cdots & g H_{1, \lambda} & H_{f}+g^{2} H_{2, \lambda}
\end{array}\right]\left[\begin{array}{l}
\cdots \\
\left|Q_{\lambda} \bar{Q}_{\lambda} G_{\lambda}\right\rangle \\
\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle
\end{array}\right] } & =E\left[\begin{array}{l}
\cdots \\
\left|Q_{\lambda} \bar{Q}_{\lambda} G_{\lambda}\right\rangle \\
\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle
\end{array}\right] \\
& \downarrow \\
& {\left[\begin{array}{cc}
H_{f}+g^{2} H_{2}+\mu^{2} & g H_{1} \\
g H_{1} & H_{f}+g^{2} H_{2}
\end{array}\right]\left[\begin{array}{l}
|Q \bar{Q} G\rangle \\
|Q \bar{Q}\rangle
\end{array}\right] }
\end{aligned}
$$

Reduction to the $\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle$ component
We follow [Wilson PRD 2 (1970) 1438]

$$
H_{Q \bar{Q}_{\text {eff }, \lambda}}\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle=E\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle
$$

The effective eigenvalue equation

$$
H_{Q \bar{Q} \text { eff } \lambda}\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle=E\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle
$$

$$
\left|Q_{t} \bar{Q}_{t}\right\rangle=\int\left[1^{\prime} 2^{\prime}\right] P^{+} \tilde{\delta}\left(P-k_{1}^{\prime}-k_{2}^{\prime}\right) \psi_{1^{\prime} 2^{\prime}}\left(\kappa_{1^{\prime} 2^{\prime}}^{\perp}, x_{1^{\prime}}\right) \frac{\delta_{c_{1^{\prime}} c_{2^{\prime}}}}{\sqrt{3}} b_{1^{\prime}, \lambda}^{\dagger} d_{2^{\prime}, \lambda}^{\dagger}|0\rangle
$$

The effective eigenvalue equation

The eigenvalue equation in the NR limit is

$$
\left[\frac{\left|\vec{k}_{12}\right|^{2}}{m}-B+\frac{\delta m_{t}^{2}}{2 m}+\frac{\delta m_{t}^{2}}{2 m}\right] \psi_{12}\left(\kappa_{12}^{\perp}, x_{1}\right)+\int \frac{d^{3} \vec{k}_{1^{\prime} 2^{\prime}}}{(2 \pi)^{3}} V_{Q \bar{Q}}\left(\vec{k}_{12}-\vec{k}_{1^{\prime} 2^{\prime}}\right) \psi_{1^{\prime} 2^{\prime}}\left(\kappa_{1^{\prime} 2^{\prime}}^{\perp}, x_{2^{\prime}}\right)=0
$$

where

$$
V_{Q \bar{Q}}(\vec{q})=V_{C, B F}(\vec{q})+W(\vec{q})
$$

with

$$
\begin{aligned}
& =-\frac{4}{3} \frac{4 \pi \alpha}{|\vec{q}|^{2}}+B F \\
& =V_{C, B F}(\vec{q})
\end{aligned}
$$

Remark: If $\mu^{2}=0, W=0 \Rightarrow$ QED

The effective eigenvalue equation

Coulomb + Harmonic Oscillator
$\left[\frac{\vec{k}^{2}}{m}-B\right] \psi(\vec{k})+\int \frac{d^{3} q}{(2 \pi)^{3}} V_{C, B F}(\vec{q}) \psi(\vec{k}-\vec{q})-\frac{4}{3} \frac{\alpha}{2 \pi} b^{-3} \sum_{i} \tau_{i} \frac{\partial^{2}}{d k_{i}^{2}} \psi(\vec{k})=0$
$b=\frac{\sqrt{2 m}}{\lambda_{0}^{2}}$
The term coming from the gluon-mass Ansatz yields an additional harmonic oscillator interaction

Position space

$$
\left[2 m-\frac{\Delta_{\vec{r}}}{m}-\frac{4}{3} \alpha\left(\frac{1}{r}+B F\right)+\frac{1}{2} \tilde{\kappa} r^{2}\right] \psi(\vec{r})=(2 m+B) \psi(\vec{r})=M \psi(\vec{r}) .
$$

Analogous calculation for baryons presented in [Serafin, Gomez-Rocha, More, Głazek, EPJ C78 (2018)]

Some numerical results: heavy mesons

[Serafin, Gomez-Rocha, More, Głazek, EPJ C78 (2018)]
Black: PDG masses, Blue: Our calculation
Green: average of many different approaches [MGR, Hilger, Krassnigg, PRD 93 (2016)]
\star Eigenvalue equation for a single particle

$$
\begin{aligned}
& H_{\mathrm{eff} Q}|Q\rangle=\infty|Q\rangle \\
& H_{\mathrm{eff} \bar{Q}}|\bar{Q}\rangle=\infty|\bar{Q}\rangle
\end{aligned}
$$

\star The divergence is canceled when the quarks are bound \rightarrow result compatible with confinement

Remarks

The front-form (FF) eigenvalue equation

$$
\begin{gathered}
H_{\lambda}\left|\Psi_{\lambda}\right\rangle=P_{\lambda}^{-}\left|\Psi_{\lambda}\right\rangle=E\left|\Psi_{\lambda}\right\rangle \\
P_{\lambda}^{-}\left|\Psi_{\lambda}\right\rangle=\frac{M^{2}+P^{\perp 2}}{P^{+}}\left|\Psi_{\lambda}\right\rangle \quad \Rightarrow \quad\left(P_{\lambda}^{-} P^{+}-P^{\perp 2}\right)\left|\Psi_{\lambda}\right\rangle=M^{2}\left|\Psi_{\lambda}\right\rangle
\end{gathered}
$$

Remark:

* The eigenvalue is M^{2} in FF instead of M in instant form (IF);
\star At large distances: $U_{\text {eff FF }} \approx V_{\text {eff IF }}^{2}$
Linear potential in IF \Rightarrow quadratic potential in FF

$$
V_{I F}(r) \sim \sigma r \Rightarrow V_{F F}(r) \sim \sigma^{2} r^{2}
$$

[Trawiński et al. PRD90 (2014) 074017]

Summary and Conclusions

1. RGPEP is a Hamiltonian approach to QCD that connects phenomena at different energy regimes
2. $\mathcal{L}_{\mathrm{QCD}} \rightarrow \mathcal{H}_{\mathrm{QCD}} \rightarrow H_{\mathrm{QCD}} \rightarrow H_{\lambda} \rightarrow H_{Q \bar{Q} \mathrm{eff}}$
3. Asymptotic freedom in 3 -gluon vertex \checkmark
4. Effective potential for quarkonium including effective gluon explicitly
$\Rightarrow H_{Q \bar{Q} \text { eff }}=$ Coulomb + harmonic oscillator
5. Even in this crude approximation \rightarrow reasonable spectra

Ongoing applications of the RGPEP method

Spectrum of exotic states

- Tetraquarks: K. Serafin (Lanzhou Inst., China) et al. [Phys.Rev.D 105 (2022) 094028]
- Hybrid mesons: M. Gomez-Rocha (Granada U.) and collaborators.

Hadron Structure

- Proton Structure in High-Energy High-Multiplicity p-p Collisions S.D. Glazek (Warsaw U.) and P. Kubiczek (Jagiellonian U.) [Few Body Syst. 57 (2016) 7, 509-513]
- Some on structure functions for heavy hadrons: K. Serafin, PhD Thesis (Warsaw U. 2019).

Ongoing applications of the RGPEP method

Spectrum of exotic states

- Tetraquarks: K. Serafin (Lanzhou Inst., China) et al. [Phys.Rev.D 105 (2022) 094028]
- Hybrid mesons: M. Gomez-Rocha (Granada U.) and collaborators.

Hadron Structure

- Proton Structure in High-Energy High-Multiplicity p-p Collisions S.D. Glazek (Warsaw U.) and P. Kubiczek (Jagiellonian U.) [Few Body Syst. 57 (2016) 7, 509-513]
- Some on structure functions for heavy hadrons: K. Serafin, PhD Thesis (Warsaw U. 2019).

End

Appendix

RGPEP

Effective quanta

Hamiltonian can be re-written in terms of effective quanta

$$
\begin{gathered}
H(q)=H_{\lambda}\left(q_{\lambda}\right) \\
q^{\dagger}|0\rangle=|q\rangle \quad \rightarrow \quad q_{\lambda}^{\dagger}|0\rangle=\left|q_{\lambda}\right\rangle \quad q_{\lambda}=\mathcal{U}_{\lambda} q \mathcal{U}_{\lambda}^{\dagger}
\end{gathered}
$$

$s=$ size
$\lambda=1 / s$ momentum scale $\mathcal{U}_{t}=T e^{-\int_{0}^{t} d \tau \mathcal{G}_{\tau}}, \quad \mathcal{G}_{t}=\left[H_{f}, H_{P t}\right]$

RGPEP equation

$$
H_{\lambda}^{\prime}=\left[\left[H_{f}, H_{P \lambda}\right], H_{\lambda}\right]
$$

Initial condition

$$
H_{\lambda=\infty}\left(=H_{s=0}\right)=H_{Q C D}^{\text {canonical }}+\mathrm{CT}_{\Delta \delta}
$$

Counterterms $\mathrm{CT}^{\Delta \delta}$ remove UV-cutoff $\Delta \delta$.

RGPEP

Solve the RGPEP equation perturbatively

$$
H_{\lambda}^{\prime}=\left[\left[H_{f}, H_{P \lambda}\right], H_{\lambda}\right] \quad q_{\lambda}=\mathcal{U}_{\lambda} q \mathcal{U}_{\lambda}^{\dagger}
$$

perturbatively, order by order

$$
H_{\lambda}=H_{f}+g H_{1, \lambda}+g^{2} H_{2, \lambda}+g^{3} H_{3, \lambda}+g^{4} H_{4, \lambda}+\ldots
$$

$$
\begin{aligned}
\mathcal{H}_{f}^{\prime} & =0, \\
g \mathcal{H}_{\lambda 1}^{\prime} & =\left[\left[\mathcal{H}_{f}, g \mathcal{H}_{1 P \lambda}\right], \mathcal{H}_{f}\right] \\
g^{2} \mathcal{H}_{\lambda 2}^{\prime} & =\left[\left[\mathcal{H}_{f}, g^{2} \mathcal{H}_{2 P \lambda}\right], \mathcal{H}_{f}\right]+\left[\left[\mathcal{H}_{f}, g \mathcal{H}_{1 P \lambda}\right], g \mathcal{H}_{1 \lambda}\right], \\
g^{3} \mathcal{H}_{\lambda 3}^{\prime} & =\left[\left[\mathcal{H}_{f}, g^{3} \mathcal{H}_{3 P \lambda}\right], \mathcal{H}_{f}\right]+\left[\left[\mathcal{H}_{f}, g^{2} \mathcal{H}_{2 P \lambda}\right], g \mathcal{H}_{1 \lambda}\right]+\left[\left[\mathcal{H}_{f}, g \mathcal{H}_{1 P t \lambda}\right], g^{2} \mathcal{H}_{2 \lambda}\right],
\end{aligned}
$$

\rightarrow Integration yields functions with form factors

$$
e^{-\left(\mathcal{M}_{a}^{2}-\mathcal{M}_{b}^{2}\right)^{2} / \lambda^{4}}
$$

Renormalized Hamiltonian

Examples of terms in $H_{\lambda Q C D}=H_{f}+g H_{1, \lambda}+g_{2, \lambda}^{2}+g^{3} H_{3, \lambda}+g^{4} H_{4, \lambda}+\ldots$
0 -th order terms
$\rightarrow \rightarrow$ rm
1-st order terms
. கో, ஈోை
2nd-order terms $\xrightarrow{\sim}$ C0\% ,

3rd-order terms

etc
4th-order terms

Example of 3rd-order calculation:

\rightarrow The three-gluon vertex:

$$
Y_{\lambda}=g H_{1 \lambda}+g^{3} H_{3 \lambda}
$$

\rightarrow We obtain the running coupling with the correct AF behavior:

$$
\Rightarrow g_{\lambda}=g_{0}-\frac{g_{0}^{3}}{48 \pi^{2}} N_{c} 11 \ln \frac{\lambda}{\lambda_{0}}
$$

Structure of the eigenvalue problem

The front-form (FF) eigenvalue equation

$$
\begin{gathered}
H_{\lambda}\left|\Psi_{\lambda}\right\rangle=P_{\lambda}^{-}\left|\Psi_{\lambda}\right\rangle=E\left|\Psi_{\lambda}\right\rangle \\
P_{\lambda}^{-}\left|\Psi_{\lambda}\right\rangle=\frac{M^{2}+P^{\perp 2}}{P^{+}}\left|\Psi_{\lambda}\right\rangle \quad \Rightarrow \quad\left(P_{\lambda}^{-} P^{+}-P^{\perp 2}\right)\left|\Psi_{\lambda}\right\rangle=M^{2}\left|\Psi_{\lambda}\right\rangle
\end{gathered}
$$

Remark:

* The eigenvalue is M^{2} in FF instead of M in instant form (IF);
\star At large distances: $U_{\text {eff FF }} \approx V_{\text {eff IF }}^{2}$
Linear potential in IF \Rightarrow quadratic potential in FF

$$
V_{I F}(r) \sim \sigma r \Rightarrow V_{F F}(r) \sim \sigma^{2} r^{2}
$$

[Trawiński et al. PRD90 (2014) 074017]

Effective theory for heavy quarks

Hierarchy of scales:

Assumptions

* QCD with only one flavor
* No $Q \bar{Q}$ pairs (too heavy)
\star 2nd-order perturbative RGPEP:

$$
H_{Q C D \lambda}=H_{f}+g H_{1, \lambda}+g^{2} H_{2, \lambda} \quad\left|\Psi_{\lambda}\right\rangle=\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle+\left|Q_{\lambda} \bar{Q}_{\lambda} g_{\lambda}\right\rangle
$$

* A gluon-mass ansatz will account for non-Abelian terms

Structure of the eigenvalue problem

Gluon-mass ansatz

$$
\begin{aligned}
{\left[\begin{array}{ccc}
\cdots & \cdots & \ldots \\
\cdots & H_{f}+g^{2} H_{2, \lambda} & g H_{1, \lambda} \\
\cdots & g H_{1, \lambda} & H_{f}+g^{2} H_{2, \lambda}
\end{array}\right]\left[\begin{array}{l}
\cdots \\
\left|Q_{\lambda} \bar{Q}_{\lambda} G_{\lambda}\right\rangle \\
\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle
\end{array}\right] } & =E\left[\begin{array}{l}
\cdots \\
\left|Q_{\lambda} \bar{Q}_{\lambda} G_{\lambda}\right\rangle \\
\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle
\end{array}\right] \\
& \downarrow \\
& {\left[\begin{array}{cc}
H_{f}+g^{2} H_{2}+\mu^{2} & g H_{1} \\
g H_{1} & H_{f}+g^{2} H_{2}
\end{array}\right]\left[\begin{array}{l}
|Q \bar{Q} G\rangle \\
|Q \bar{Q}\rangle
\end{array}\right] }
\end{aligned}=E\left[\begin{array}{l}
|Q \bar{Q} G\rangle \\
|Q \bar{Q}\rangle
\end{array}\right] .
$$

Reduction to the $\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle$ component
We follow [Wilson PRD 2 (1970) 1438]

$$
\begin{aligned}
& H_{Q \bar{Q} \text { eff } \lambda}=H_{f}+g^{2} H_{2, \lambda}+\frac{g^{2}}{2} H_{1, \lambda}\left(\frac{1}{E_{l}-H_{f}-\mu^{2}}+\frac{1}{E_{l^{\prime}}-H_{f}-\mu^{2}}\right) H_{1, \lambda} \\
& H_{Q \bar{Q} \text { eff }, \lambda}\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle=E\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle
\end{aligned}
$$

The effective eigenvalue equation

$$
\begin{aligned}
& H_{Q \bar{Q} \text { eff } \lambda}\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle=E\left|Q_{\lambda} \bar{Q}_{\lambda}\right\rangle \\
& H_{Q \bar{Q} \mathrm{eff} \lambda}=H_{f}+g^{2} H_{2, \lambda}+\frac{g^{2}}{2} H_{1, \lambda}\left(\frac{1}{E_{l}-H_{f}-\mu^{2}}+\frac{1}{E_{l^{\prime}}-H_{f}-\mu^{2}}\right) H_{1, \lambda}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mass terms } \\
& \text { gluon exch. terms } \\
& \text { inst. int. } \\
& \left|Q_{t} \bar{Q}_{t}\right\rangle=\int[24] P^{+} \tilde{\delta}\left(P-k_{2}-k_{4}\right) \psi_{24}\left(\kappa_{24}^{\perp}, x_{2}\right) \frac{\delta_{c_{2} c_{4}}}{\sqrt{3}} b_{2, \lambda}^{\dagger} \dagger_{4, \lambda}^{\dagger}|0\rangle
\end{aligned}
$$

The effective eigenvalue equation

The eigenvalue equation in the NR limit is

$$
\left[\frac{\left|\vec{k}_{13}\right|^{2}}{m}-B+\frac{\delta m_{t}^{2}}{2 m}+\frac{\delta m_{t}^{2}}{2 m}\right] \psi_{13}\left(\kappa_{13}^{\perp}, x_{1}\right)+\int \frac{d^{3} \vec{k}_{24}}{(2 \pi)^{3}} V_{Q \bar{Q}}\left(\vec{k}_{13}-\vec{k}_{24}\right) \psi_{24}\left(\kappa_{24}^{\perp}, x_{2}\right)=0
$$

where

$$
V_{Q \bar{Q}}(\vec{q})=V_{C, B F}(\vec{q})+W(\vec{q})
$$

with

$$
\left.\begin{array}{rl}
& =-\frac{4}{3} \frac{4 \pi \alpha}{|\vec{q}|^{2}}+B F \\
& =V_{C, B F}(\vec{q})
\end{array}\right)=\frac{4}{3} 4 \pi \alpha\left[\frac{1}{\vec{q}^{2}}-\frac{1}{q_{z}^{2}}\right] \frac{\mu^{2}}{\mu^{2}+\vec{q}^{2}} e^{-2 m^{2} \frac{\left|\vec{q}^{2}\right|^{2}}{q_{z}^{2} \lambda^{4}}} .
$$

Remark: If $\mu^{2}=0, W=0 \Rightarrow$ QED

The effective eigenvalue equation

Coulomb + Harmonic Oscillator

$$
\begin{aligned}
& {\left[\frac{\vec{k}^{2}}{m}-B\right] \psi(\vec{k})+\int \frac{d^{3} q}{(2 \pi)^{3}} V_{C, B F}(\vec{q}) \psi(\vec{k}-\vec{q})-\frac{4}{3} \frac{\alpha}{2 \pi} b^{-3} \sum_{i} \tau_{i} \frac{\partial^{2}}{d k_{i}^{2}} \psi(\vec{k})=0} \\
& b=\frac{\sqrt{2 m}}{\lambda_{0}^{2}}
\end{aligned}
$$

Position space

$$
\left[2 m-\frac{\Delta_{\vec{r}}}{m}-\frac{4}{3} \alpha\left(\frac{1}{r}+B F\right)+\frac{1}{2} \tilde{\kappa} r^{2}\right] \psi(\vec{r})=(2 m+B) \psi(\vec{r})=M \psi(\vec{r} \vec{r})
$$

Appendix

RGPEP equation:

$$
\mathcal{H}_{t}^{\prime}=\left[\left[\mathcal{H}_{f}, \mathcal{H}_{P t}\right], \mathcal{H}_{t}\right]
$$

The Hamiltonian can be expressed in the following way

$$
\mathcal{H}_{t}=\mathcal{H}_{0}+g \mathcal{H}_{t 1}+g^{2} \mathcal{H}_{t 2}+g^{3} \mathcal{H}_{t 3}+g^{4} \mathcal{H}_{t 4}
$$

And thus then the RGPEP equation reads,

$$
\begin{aligned}
& \mathcal{H}_{0}^{\prime}+g \mathcal{H}_{t 1}+g^{2} \mathcal{H}_{t 2}^{\prime}+g^{3} \mathcal{H}_{t 3}^{\prime}+g^{4} \mathcal{H}_{t 4}^{\prime} \\
= & {\left[\left[\mathcal{H}_{0}, \mathcal{H}_{0}+g \mathcal{H}_{1 P t}+g^{2} \mathcal{H}_{2 P t}+g^{3} \mathcal{H}_{3 P t}+g^{4} \mathcal{H}_{4 P t}\right], \mathcal{H}_{0}+g \mathcal{H}_{t 1}+g^{2} \mathcal{H}_{t 2}+g^{3} \mathcal{H}_{t 3}+g^{4} \mathcal{H}_{t 4}\right] . }
\end{aligned}
$$

with

$$
\begin{gathered}
\mathcal{H}_{t}\left(a_{0}\right)=\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{t}\left(i_{1}, \ldots, i_{n}\right) a_{0 i_{1}}^{\dagger} \cdots a_{0 i_{n}} \\
\mathcal{H}_{P t}\left(a_{0}\right)=\sum_{n=2}^{\infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}} c_{t}\left(i_{1}, \ldots, i_{n}\right)\left(\frac{1}{2} \sum_{k=1}^{n} p_{i_{k}}^{+}\right)^{2} a_{0_{i_{1}}}^{\dagger} \cdots a_{0 i_{n}}
\end{gathered}
$$

Appendix

Equations order by order:

$$
\begin{aligned}
\mathcal{H}_{0}^{\prime} & =0, \\
g \mathcal{H}_{t 1}^{\prime} & =\left[\left[\mathcal{H}_{0}, g \mathcal{H}_{1 P t}\right], \mathcal{H}_{0}\right] \\
g^{2} \mathcal{H}_{t 2}^{\prime} & =\left[\left[\mathcal{H}_{0}, g^{2} \mathcal{H}_{2 P t}\right], \mathcal{H}_{0}\right]+\left[\left[\mathcal{H}_{0}, g \mathcal{H}_{1 P t}\right], g \mathcal{H}_{1 t}\right], \\
g^{3} \mathcal{H}_{t 3}^{\prime} & =\left[\left[\mathcal{H}_{0}, g^{3} \mathcal{H}_{3 P t}\right], \mathcal{H}_{0}\right]+\left[\left[\mathcal{H}_{0}, g^{2} \mathcal{H}_{2 P t}\right], g \mathcal{H}_{1 t}\right]+\left[\left[\mathcal{H}_{0}, g \mathcal{H}_{1 P t}\right], g^{2} \mathcal{H}_{2 t}\right], \\
g^{4} \mathcal{H}_{t 4}^{\prime} & =\left[\left[\mathcal{H}_{0}, g^{4} \mathcal{H}_{4 P t}\right], \mathcal{H}_{0}\right]+\left[\left[\mathcal{H}_{0}, g^{3} \mathcal{H}_{3 P t}\right], g \mathcal{H}_{1 t}\right]+\left[\left[\mathcal{H}_{0}, g^{2} \mathcal{H}_{2 P t}\right], g^{2} \mathcal{H}_{2 t}\right]+\left[\left[\mathcal{H}_{0}, g \mathcal{H}_{1 P t}\right], g^{3} \mathcal{H}_{3 t}\right]
\end{aligned}
$$

Solutions order by order:
We present solutions to these equations in terms of matrix elements $\mathcal{H}_{t a b}=\langle a| \mathcal{H}|b\rangle$.

$$
\begin{aligned}
\mathcal{H}_{t 1 a b} & =f_{t a b} \mathcal{H}_{01 a b}, \\
\mathcal{H}_{t 2 a b} & =f_{t a b} \sum_{x} \mathcal{H}_{01 a x} \mathcal{H}_{01 x b} \mathcal{B}_{t a x b}+f_{t a b} \mathcal{G}_{02 a b}, \\
\mathcal{H}_{t 3 a b} & =f_{t a b} \mathcal{G}_{03 a b}+f_{t a b} \sum_{x y} \mathcal{H}_{01 a x} \mathcal{H}_{01 x y} \mathcal{H}_{01 y b} \mathcal{C}_{t a x y b}+f_{t a b} \sum_{x}\left(\mathcal{H}_{01 a x} \mathcal{G}_{02 x b}+\mathcal{G}_{02 a x} \mathcal{H}_{01 x b}\right) \mathcal{B}_{t a x b}, \\
\mathcal{H}_{t 4 a b} & =f_{t a b} \sum_{x y z} \mathcal{H}_{01 a x} \mathcal{H}_{01 x y} \mathcal{H}_{01 y z} \mathcal{H}_{01 z b} \mathcal{D}_{t a x y z b} \\
& +f_{\tau a b} \sum_{x y}\left(\mathcal{H}_{01 a x} \mathcal{H}_{01 x y} \mathcal{G}_{02 y b}+\mathcal{H}_{01 a x} \mathcal{G}_{02 x y} \mathcal{H}_{01 y b}+\mathcal{G}_{02 a x} \mathcal{H}_{01 x y} \mathcal{H}_{01 y b}\right) \mathcal{C}_{t a x y b} \\
& +f_{\tau a b} \sum_{x}\left(\mathcal{G}_{02 a x} \mathcal{G}_{02 x b}+\mathcal{H}_{01 a x} \mathcal{G}_{03 x b}+\mathcal{G}_{03 a x} \mathcal{H}_{01 x b}\right) \mathcal{B}_{t a x b}+f_{\tau a b} \mathcal{G}_{04 a b} .
\end{aligned}
$$

Appendix

RGPEP factors:

$$
\begin{aligned}
\mathcal{A}_{t a x b} & =\left[a x p_{a x}+b x p_{b x}\right] f_{t a b}^{-1} f_{t a x} f_{t b x}, \\
\mathcal{B}_{t a x b} & =\int_{0}^{t} \mathcal{A}_{\tau a x b} d \tau, \\
\mathcal{C}_{t a x y b} & =\int_{0}^{t}\left[\mathcal{A}_{\tau a x b} \mathcal{B}_{\tau x y b}+\mathcal{A}_{\tau a y b} \mathcal{B}_{\tau a x y}\right] d \tau, \\
\mathcal{D}_{\text {taxyzb }} & =\int_{0}^{t}\left[\mathcal{A}_{\tau a x b} \mathcal{C}_{\tau x y z b}+\mathcal{A}_{\tau a z b} \mathcal{C}_{\tau a x y z}+A_{\tau a y b} \mathcal{B}_{\tau a x y} \mathcal{B}_{\tau y z b}\right],
\end{aligned}
$$

with $f_{t a b}:=\exp \left[-a b^{2} t\right]$ and $a b:=\mathcal{M}_{a b}^{2}-\mathcal{M}_{b a}^{2}$.

Appendix: Toward 4th order

$$
H_{Q C D}=H_{\psi^{2}}+H_{A^{2}}+H_{A^{3}}+H_{\psi A \psi}+H_{\psi A A \psi}+H_{[\partial A A](\psi \psi)}+H_{(\psi \psi)^{2}}
$$

Canonical Hamiltonian expressed with diagrams:

$$
\begin{array}{lc}
-\mathrm{Q} & -< \\
-\overline{\mathrm{Q}} & a_{3}^{\dagger} b_{2} d_{1}
\end{array}
$$

$H_{Q C D}=\lambda+<+\lambda+\langle+\rangle+<+x+x+x+x+\geqslant+<$

$+<+\rangle+<+X$

Appendix: Example of 4th-order diagrams

Forth power of the 1st-order Hamiltonian

$$
=0\left(H_{I t}\right)^{4}-0=
$$

Appendix. H. O. parameters

Defining

$$
\begin{equation*}
\tau(T)=\int d u\left(\frac{\mu_{253}^{2} u^{2} \frac{b^{2}}{T^{2}}}{\mu_{253}^{2} \frac{b^{2}}{T^{2}}+u^{2}}+\frac{\mu_{154}^{2} u^{2} \frac{b^{2}}{T^{2}}}{\mu_{154}^{2} \frac{b^{2}}{T^{2}}+u^{2}}\right) e^{-u^{2}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{\tau}=\int d T T\left(1-T^{2}\right) \vec{w}(T) \tau(T) \tag{3}
\end{equation*}
$$

one can write:

$$
\begin{equation*}
W_{Q \bar{Q}}=\int \frac{d^{3} q}{(2 \pi)^{3}} W(\vec{q}) \frac{1}{2} q^{2} w_{i}(t) \frac{\partial^{2}}{\partial k_{i}^{2}} \psi(\vec{k})=-\frac{4}{3} \frac{\alpha}{4 \pi} b^{-3} \sum_{i} \tau_{i} \frac{\partial^{2}}{d k_{i}^{2}} \tag{4}
\end{equation*}
$$

