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Introduction

Asymptotic freedom and the non-trivial struc-
ture of the QCD vacuum prevents a perturba-
tive characterization of strongly-bounded systems
based on equal-time commutation relations. The
Front Form of Hamiltonian dynamics is boost in-

variant, has a simpler vacuum and presents a
more adequate formalism to this end, but suf-
fers from severe divergences. In this context
Stanistaw D. Glazek and Kenneth G. Wilson devel-
oped the Similarity Renormalization group (SRG)
and Renormalization Group Procedure for Effec-
tive Particles ( ) to obtain non-divergent
results by means of effective Hamiltonians with
counterterms. has passed the test of pro-
ducing asymptotic freedom, though with some un-
desired dependence on regularization at 3rd order
in perturbation theory, so new options need to be
considered. Here we test if a canonical infinitesimal
mass for gluons can be used as regulator.

1. Front Form of dynamics
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With (anti)commutation relations in the front ™ =0 :

[ab a” = 167°p" 0 (p1 — pv) 05, 0r,, = {51, bT/}

and gauge AT = 0, we obtain Hamiltonians such as:
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where we used a cononical gluon mass £ and a gaussian (1,4 result for Creen’s functions
2 22
form factor f; = exp [—tr (./\/lZ - M f) ] as regulators. (1] when h(z) = 0.
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2. Effective Hamiltonians from
RGPEP

The
e Relates dynamics at different
scales through equation

Hy (ap) = Hi (ar)

e H, initial Hamiltonian with

counterterms, H; eflective one
at scale t = s* = L with
s| = length and |A| = energy.
e q; effective operators satistying:
a; = UagU. tTa

with U; unitary:.
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e Evolution with ¢ is

/I Tr7r/
H, (CLO) — [Ut ¢ Hi (CLO)] from Patryk Kubiczek

e The procedure provides ways of relaxing cutoffs
by the introduction of form factors

ft — XD [—t (./\/l? — M?)Ql
with M invariant masses.
4. Regularizations and results

-

['he initial Hamiltonian has UV (k — oo) and
small-z (x — 0) divergences. The counterterms
cancel UV divergences and different options are

considered for small-x:

¢ Old reg.: Several regulating functions of the
small-z divergences are studied in [1]. The
coupling constant is independent of their

cutoffs, but a finite dependence on x; remains
in most cases (see figure 1) and asymptotic
freedom is not always observed at this order.
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Figure 2: gy versus scale A for different small-z regulariza-

tions, gy is set to 1.1 at A = 100 GeV. The black line is

analysis, also obtained in

Figure 1: Figure adapted

3. The 3-gluon vertex and the
running coupling

e The running coupling is obtained through the
3-gluon vertex tunction Voy; = gHop 44 + gSHQLt

® )5 ¢+ is obtained solving the equation by
means of a parturbative expansion of H;

Ht — Hll,O,t"‘(H21,g,t_|_h-c)_|_H11,g?,t_|_H227927t_|—(H?)l,gQ,t_'_h-C-)_|_- ..

where H; with ¢ = 0 is the regularized
Front-Form Hamiltonian with counterterms.

e We need to consider at least first and third order
terms,
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where the third order diagrams are
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e Dynamics are studied in terms of

Longitudinal momentum fractions: Ty/3 = X1 = p1+/p3+

Relative transverse momenta: /ifQ = lif/g = pf T I /3103L

e Ultraviolet divergences are cancelled by
counterterms and a reference scale ¢, is

introduced.

e The coupling constant is the function in front of
Y103 for an arbitrary value of 1 and k19 — 0:

Vol (5131/3, K19, 6) = gY123
+ ¢7Y)93 [Ct (:1:1/3, /{fz) — ¢4, (331/3, /ifé) — (:131/3, /{f‘Q, e)} .
e Setting the value of g; to be gy at scale ¢
gt = go + 98) F}églo [Ct (3317 /‘ffz) — Gy (CL'la /‘if—z)} :

e The function ¢; receives contributions from

enclosed diagrams below. Kach one is divergent
when & — 0, but the sum is finite.
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Figure 3: Third-order terms of the 3-gluon vertex, black dots denote counterterms. Green and blue enclosed counterterms cancel

the corresponding 2nd-order divergences, the 3rd-order counterterm is enclosed with a orange rectangle.

e New reg.: A gluon mass &
also serve as a small-z

regulator. Form factors f,

which appear once the e (GeY) e gL
equations are
solved, dump divergent

terms once they have

Figure 4: gy versus scale A us-
ing a gluon mass as a small-

x regulator, g, is set to 1.1 at

A = 100 GeV. The black line
rendering the integral finite  (p(z) =

without the introduction of
extra functions besides f; ,

non-zero gluon masses,

0) is the result from
renormalization group equa-

tions.
neccesary to regularize the bare Hamiltonian.

Asymptotic freedom is produced down to 1 ~ 0.13
with a finite dependence on this variable:
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gt = go — N, o log () 11+ A (21)]
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Remarks

e Ad 1. o0; denote spin and r; color. Integer subscript in operators and
sum simbols stand for quantum numbers: a; = ay, 5, -

[ (1) = A
Tp
quantum numbers denoted by 1, 2 and 3.

2
e Ad 2. Invariant masses are M; = (Zp@- p) .

e Ad 3. Integer subscrips 75 in Hamiltonians denote ¢-creation and
j-annihilation operators. € denotes polarization dependence and ¢y is
the finite part of the 3rd-order counterterm.

and (> [),y; denote sum and integration over

e Ad 4. Function h(z;) depends only on zy since x5 =1 — x1; 21 € (0, 1).

e Ad 5. The funtion h,, presented at the conference is corrected in this
Versliol.
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