Path integral study of the Casimir effect in a chiral medium

Thomas Oosthuyse
KU Leuven

August 4, 2022

Motivation

- Growing evidence of interplay between Casimir effect, confinement, and other nonperturbative effets from lattice ${ }^{1}$
- Introducing chiral media is known to result in potential repulsive Casimir effect ${ }^{2}$
- Tunable, repulsive Casimir force can be useful in micro(electro)mechanical systems
- Revisit parallel plate setup in gauge invariant path integral formalism

[^0]
Starting point

Euclidean QED with θ-term to model chiral media

$$
S=\int \mathrm{d}^{4} x\left[\frac{1}{4} F_{\mu \nu} F_{\mu \nu}+i \frac{\theta(x)}{4} F_{\mu \nu} \widetilde{F}_{\mu \nu}\right]
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ and $\widetilde{F}_{\mu \nu}=\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} F_{\rho \sigma}$.
In Feynman gauge this can be written as

$$
S=-\frac{1}{2} \int \mathrm{~d}^{4} \times A_{\mu} K_{\mu \nu} A_{\nu}
$$

with

$$
K_{\mu \nu}=\delta_{\mu \nu} \partial^{2}+i \varepsilon_{\mu \nu \rho \sigma} \partial_{\sigma} \theta(x) \partial_{\rho}
$$

Boundary conditions on plates

Apply perfect electromagnetic conductor (PEMC) ${ }^{3}$ boundary conditions to plates:

$$
n_{\mu} F_{\mu \nu}+\left.i \theta_{ \pm} n_{\mu} \widetilde{F}_{\mu \nu}\right|_{z= \pm \frac{L}{2}}=0
$$

where $n_{\mu}=(0,0,0,1)$ is the normal vector of the plates.
Implement boundary conditions in the action using auxiliary fields ${ }^{4}$

$$
S_{\mathrm{bc}}=\int_{z=-\frac{L}{2}} \mathrm{~d}^{3} \mathbf{x} \bar{b}_{i}\left(F_{3 i}+i \theta_{-} \widetilde{F}_{3 i}\right)+\int_{z=\frac{L}{2}} \mathrm{~d}^{3} \mathbf{x} b_{i}\left(F_{3 i}+i \theta_{+} \widetilde{F}_{3 i}\right)
$$

[^1]
Cases

EOM only depends on $\partial_{\mu} \theta(x)+$ choose $\theta(x)$ to only depend on $z: \beta(z)=\partial_{z} \theta(z)$
Linear $\theta(z)$ (constant $\beta(z)$) is known to be effective action of Weyl Semimetal (WSM) ${ }^{5}$

We consider the following cases:

1. QED: $\beta(z)=0$
2. Chiral QED/WSM: $\beta(z)=\beta$ constant
3. Chiral QED between, QED outside: $\beta(z)= \begin{cases}\beta & \text { if } z \in\left[-\frac{L}{2}, \frac{L}{2}\right] \\ 0 & \text { otherwise }\end{cases}$
[^2]
Schematic overview

$$
Z=\int \mathcal{D} A \mathcal{D} b e^{-S-S_{\mathrm{bc}}}
$$

S_{bc} is linear in the fields $\rightarrow A_{\mu}$ can be integrated out

$$
Z=\frac{1}{\sqrt{\operatorname{det}(K)}} \int \mathcal{D} b e^{-\frac{1}{2} \int \mathrm{~d}^{3} x b \mathbb{K} b}=\frac{1}{\sqrt{\operatorname{det}(K) \operatorname{det}(\mathbb{K})}}
$$

where \mathbb{K} follows from the bcs and the Green's function K^{-1}
\rightarrow effects of restricted A_{μ} field modelled as (nonlocal) 3D effective action The energy follows as

$$
\begin{aligned}
\mathcal{E} & =\mathcal{E}_{A}+\mathcal{E}_{b} \\
& =\frac{1}{2 V} \log \operatorname{det}(K)+\frac{1}{2 V} \log \operatorname{det}(\mathbb{K})
\end{aligned}
$$

Calculating the Green's function

Fourier transform $t, x, y \rightarrow \mathbf{k}$

$$
\left[\delta_{\mu \rho}\left(\partial_{z}^{2}-\mathbf{k}^{2}\right)-g \beta(z) \epsilon_{\mu \rho j 3} k_{j}\right] K_{\rho \nu}^{-1}\left(\mathbf{k}, z, z^{\prime}\right)=\delta_{\mu \nu} \delta\left(z-z^{\prime}\right)
$$

Using a suitable polarization basis this reduces to a scalar equation

$$
\left(\partial_{z}^{2}-k_{c}^{2}(z)\right) D\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right)
$$

with

$$
k_{c}^{2}(z)=|\mathbf{k}|^{2}+i \beta(z)|\mathbf{k}|
$$

Calculating the Green's function

Case 1: $k_{c}(z)=|\mathbf{k}|$ and case 2: $k_{c}(z)=k_{c}=\sqrt{|\mathbf{k}|^{2}+i \beta|\mathbf{k}|}$ have constant $k_{c}(z)$

$$
\left.\begin{array}{rlrl}
\left(\partial_{z}^{2}-|\mathbf{k}|^{2}\right) f\left(z-z^{\prime}\right) & =\delta\left(z-z^{\prime}\right) & f\left(z-z^{\prime}\right) & =-\frac{1}{2|\mathbf{k}|} e^{-\left|z-z^{\prime}\right||\mathbf{k}|} \\
\left(\partial_{z}^{2}-k_{c}^{2}\right) \varphi\left(z-z^{\prime}\right) & =\delta\left(z-z^{\prime}\right) & & \varphi\left(z-z^{\prime}\right)
\end{array}\right)=-\frac{1}{2 k_{c}} e^{-\left|z-z^{\prime}\right| k_{c}}
$$

Case 3: $k_{c}(z)$ is piecewise constant, glue solutions of cases 1 and 2 together by requiring continuity and smoothness.

$$
\begin{aligned}
\bar{D}\left(z, z^{\prime}\right) & =\varphi\left(z-z^{\prime}\right)+C_{1}\left(z^{\prime}\right) \sinh \left(z k_{c}\right)+C_{2}\left(z^{\prime}\right) \cosh \left(z k_{c}\right) \\
D^{ \pm}\left(z, z^{\prime}\right) & =f\left(z-z^{\prime}\right)+C^{ \pm}\left(z^{\prime}\right) e^{-|z||\mathbf{k}|}
\end{aligned}
$$

Casimir force

The Casimir force follows as

$$
F=F_{A}+F_{b}=-\frac{\mathrm{d} \mathcal{E}_{A}}{\mathrm{~d} L}-\frac{\mathrm{d} \mathcal{E}_{b}}{\mathrm{~d} L}
$$

The force component from bcs F_{b} is finite while F_{A} requires regularization.

Look at dimensionless Casimir force relative to the QED Casimir force

$$
\widetilde{F}=\frac{F}{F_{\text {qed }}}, \quad F_{\text {qed }}=-\frac{\pi^{2}}{240 L^{4}}
$$

Case 1: QED with PEMC plates

In terms of "duality angles" $\theta_{ \pm}^{\prime}=\arctan \left(\theta_{ \pm}\right)$

Casimir force only depends on the difference $\theta_{+}^{\prime}-\theta_{-}^{\prime}$

The dotted line is $-\frac{7}{8}$
Agrees with ${ }^{a}$
${ }^{a}$ Rode, Bennett, and Buhmann 2018.

Case 2: Chiral QED with PEMC plates

$\widetilde{F}(\beta L): \theta_{+}=\theta_{-}$
$\widetilde{F}^{\mathrm{EM}}(\beta L): \theta_{ \pm}=\infty, \theta_{\mp}=0$

Agrees with ${ }^{\text {a }}$

${ }^{a}$ Fukushima, Imaki, and Qiu 2019.

Case 3: Chiral between, QED outside

$\widetilde{F}(\beta L):$ Case 2 for $\theta_{+}=\theta_{-}$ $\widetilde{F}_{b b}(\beta L)$: Force component from bcs
$\widetilde{F}_{A}(\beta L)$: Force component from WSM

Case 2 and 3 are identical for all $\theta_{ \pm}$

Outlook

- Construct different, experimentally viable, setups
- Consider finite temperatures
- Moving plates
- Dynamic axion field
- Move towards models with interesting nonperturbative behaviour such as $(1+1) \mathrm{d} \mathbb{C} P^{N-1}$ and $(2+1)$ d Yang Mills

Polarization basis

Longitudinal and polarization in z direction

$$
E_{\mu}^{0}=\frac{1}{|\mathbf{k}|}\binom{\mathbf{k}}{0}, \quad E_{\mu}^{3}=\binom{\mathbf{0}}{1}
$$

Transversal polarizations

$$
E_{i}^{1}=\frac{1}{\sqrt{2}}\left(e_{i}^{1}+i e_{i}^{2}\right), \quad E_{i}^{2}=\frac{1}{\sqrt{2}}\left(e_{i}^{1}-i e_{i}^{2}\right)
$$

with $e_{i}^{1,2}$ real and obeying

$$
e_{i}^{2}=\varepsilon_{i j k} \frac{k_{k}}{|\mathbf{k}|} e_{j}^{1}
$$

Polarization basis

K is diagonal in polarization basis

$$
K_{r s}=\left(\begin{array}{llll}
\partial_{z}^{2}-|\mathbf{k}|^{2} & & & \\
& \partial_{z}^{2}-\left(k_{c}^{\star}\right)^{2}(z) & & \\
& & \partial_{z}^{2}-k_{c}^{2}(z) & \\
& & & \partial_{z}^{2}-|\mathbf{k}|^{2}
\end{array}\right)
$$

with

$$
k_{c}^{2}(z)=|\mathbf{k}|^{2}+i \beta|\mathbf{k}|
$$

Nonlocal effective action

The nonlocal effective theory is given by the action

$$
\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{k}}{(2 \pi)^{3}} b_{i}^{\dagger a} \mathbb{K}_{i j}^{a b} b_{j}^{b}
$$

with

$$
\mathbb{K}_{i j}^{a b}=\left.\bar{V}_{i \mu}^{a}\left(\partial_{z}\right) V_{\nu j}^{b}\left(\partial_{z^{\prime}}\right) K_{\mu \nu}^{-1}\left(z, z^{\prime}\right)\right|_{z=z_{a}, z^{\prime}=z_{b}}
$$

and

$$
\begin{aligned}
V_{r s}^{a}\left(\partial_{z}\right) & =\left(\begin{array}{cccc}
\partial_{z} & 0 & 0 & i|\mathbf{k}| \\
0 & \partial_{z}+i g \theta_{a}|\mathbf{k}| & 0 & 0 \\
0 & 0 & \partial_{z}-i g \theta_{a}|\mathbf{k}| & 0
\end{array}\right) \\
\bar{V}_{r s}^{a}\left(\partial_{z^{\prime}}\right) & =\left(\begin{array}{ccc}
\partial_{z^{\prime}} & 0 & 0 \\
0 & \partial_{z^{\prime}}+i g \theta_{a}|\mathbf{k}| & 0 \\
0 & 0 & \partial_{z^{\prime}}-i g \theta_{a}|\mathbf{k}| \\
-i|\mathbf{k}| & 0 & 0
\end{array}\right)
\end{aligned}
$$

[^0]: ${ }^{1}$ Chernodub, Goy, Molochkov, and Nguyen 2018; Chernodub, Goy, and Molochkov 2019.
 ${ }^{2}$ Fukushima, Imaki, and Qiu 2019; Wilson, Allocca, and Galitski 2015.

[^1]: ${ }^{3}$ Lindell and Sihvola 2005.
 ${ }^{4}$ Bordag, Robaschik, and Wieczorek 1985.

[^2]: ${ }^{5}$ Goswami and Tewari 2013.

