Realistic Neutron Stars from Holography

Nicolas Kovensky

IPhT-CEA-Paris, Saclay, France

 $\mathsf{XV}^{\mathrm{th}}$ Quark Confinement and the Hadron Spectrum Conference.

Based on 2105.03218 , 2112.10633 (SciPost Physics), and 2111.03374 (PRD), in collaboration with Andreas Schmitt and Aaron Poole at U. of Southampton.

Partially funded by the Leverhulme Trust.

Introduction and motivations

Astrophysics and constraints on the Equation of State

NS matter: baryonic, isospin-asymmetric, β -eq, neutral + crust.

Astrophysics and constraints on the Equation of State

NS matter: baryonic, isospin-asymmetric, β -eq, neutral + **crust**.

Observations:

[LIGO-GW170817+GW190814, NICER 21]

- Masses: $M_{
 m max} > 2.08~M_{\odot}$ (or 2.5 M_{\odot} ?),
- Tidal deformabilities: $70 < \Lambda_{1.4} < 580$,
- Radii: 11.5 km $< R_{1.4} <$ 14.3 km and 11.4 km $< R_{2.1} <$ 16.3 km,

NS matter: baryonic, isospin-asymmetric, β -eq, neutral + crust.

Observations:

[LIGO-GW170817+GW190814, NICER 21]

- Masses: $M_{
 m max} > 2.08 \, M_{\odot}$ (or 2.5 M_{\odot} ?),
- Tidal deformabilities: $70 < \Lambda_{1.4} < 580$,
- Radii: 11.5 km $< R_{\rm 1.4} <$ 14.3 km and 11.4 km $< R_{\rm 2.1} <$ 16.3 km,

w/ pQCD and χ EFT for a piecewise polytropic interp: [Annala et al 21]

Neutron star matter is dense, but not asymptotically dense. Strong coupling makes **AdS/CFT** a valuable tool in this context. Neutron star matter is dense, but not asymptotically dense. Strong coupling makes **AdS/CFT** a valuable tool in this context.

Most attempts use holography for a description of quark and very dense baryonic matter, combining it with "ordinary" nuclear matter.

- Instantons/Pointlike baryons [Ghoroku et al 19,21][Zhang et al 19]
- D3D7 model for quark matter [Hoyos+ 16][Annala+ 17][B Fadafan+ 19,20]
- Hard-Wall AdS/QCD [Bartolini+ 21]
- V-QCD model for quark/dense baryonic matter [Chesler,Demerick,Ecker,Ishii,Järvinen,Jokela,Loeb,Nijs, Remes,Vuorinen 18+]
- Recent reviews: [Jokela; Jokela, Järvinen, Remes, 21]

Neutron star matter is dense, but not asymptotically dense. Strong coupling makes **AdS/CFT** a valuable tool in this context.

Most attempts use holography for a description of quark and very dense baryonic matter, combining it with "ordinary" nuclear matter.

- Instantons/Pointlike baryons [Ghoroku et al 19,21][Zhang et al 19]
- D3D7 model for quark matter [Hoyos+ 16][Annala+ 17][B Fadafan+ 19,20]
- Hard-Wall AdS/QCD [Bartolini+ 21]
- V-QCD model for quark/dense baryonic matter
 [Chesler,Demerick,Ecker,Ishii,Järvinen,Jokela,Loeb,Nijs, Remes,Vuorinen 18+]
- Recent reviews: [Jokela; Jokela, Järvinen, Remes, 21]

We use our description of isospin asymmetry to construct a 'realistic' Neutron Star within holography, including the crust!

Baryons, Pions and Isospin asymmetry in holography

Confinement: gluon physics and holographic gravity background

Confinement: gluon physics and holographic gravity background

Chiral sym. breaking: flavor physics and D-branes

Confinement: gluon physics and holographic gravity background

Chiral sym. breaking: flavor physics and D-branes

Holographic matter: Gauge fields, strings, instantons

Many-instanton systems are hard to work with ... We use a homogeneous approximation for baryons [Rozali+ 07].

$$\hat{\mathcal{A}}_0(z o \pm \infty) = \mu_B, \quad \mathcal{A}_0^{(3)}(z o \pm \infty) = \pm \mu_I, \quad \mathcal{A}_i(z) = \lambda \ h(z) \ \sigma_i.$$

Many-instanton systems are hard to work with ... We use a homogeneous approximation for baryons [Rozali+ 07].

$$\hat{\mathcal{A}}_0(z o \pm \infty) = \mu_B, \quad \mathcal{A}_0^{(3)}(z o \pm \infty) = \pm \mu_I, \quad \mathcal{A}_i(z) = \lambda \ h(z) \ \sigma_i.$$

This leads to four possible configurations:

- Vacuum
- **Pion-condensed phase**: reproduces χPT .
- Baryonic phase: includes isospin asymmetry.
- **Coexistence phase**: π -cond interacting with dense B-medium.

We can compare all phases dynamically and also include temperature!

Many-instanton systems are hard to work with ... We use a homogeneous approximation for baryons [Rozali+ 07].

$$\hat{\mathcal{A}}_0(z o \pm \infty) = \mu_B, \quad \mathcal{A}_0^{(3)}(z o \pm \infty) = \pm \mu_I, \quad \mathcal{A}_i(z) = \lambda \ h(z) \ \sigma_i.$$

This leads to four possible configurations:

- Vacuum
- **Pion-condensed phase**: reproduces χPT .
- Baryonic phase: includes isospin asymmetry.
- **Coexistence phase**: π -cond interacting with dense B-medium.

We can compare all phases dynamically and also include temperature!

Top-down model, with strongly coupled physics – only 2 parameters!, Large N_c (no p + n) and no asymptotic freedom (no quark cores).

A model for Neutron Stars

The CORE:

(no pion condensate)

isospin-asymmetric h-baryons + Fermi gas of electrons and muons

to construct β -equilibrated, locally neutral matter by imposing

$$\mu_{\mu} = \mu_{e}, \qquad \mu_{e} + \mu_{p} = \mu_{n} + \mu_{\nu}, \qquad n_{p} = n_{e} + n_{\mu},$$

where $\mu_{\nu} \approx 0$ and we have defined $n_{n/p} \equiv (n_B \pm n_I)/2$.

The CORE:

(no pion condensate)

isospin-asymmetric h-baryons |+| Fermi gas of electrons and muons

to construct β -equilibrated, locally neutral matter by imposing

$$\mu_{\mu} = \mu_{e}, \qquad \mu_{e} + \mu_{p} = \mu_{n} + \mu_{\nu}, \qquad n_{p} = n_{e} + n_{\mu},$$

where $\mu_{\nu} \approx 0$ and we have defined $n_{n/p} \equiv (n_B \pm n_I)/2$.

The CRUST: (mixed phase)

- bubbles of h-nuclear matter
- separated from a charged lepton gas.
- impose global neutrality instead
- + surface and Coulomb effects $\Rightarrow \Sigma$.

[Glendenning 00, Schmitt 20]

The CORE:

(no pion condensate)

isospin-asymmetric h-baryons |+| Fermi gas of electrons and muons

to construct β -equilibrated, locally neutral matter by imposing

$$\mu_{\mu} = \mu_{e}, \qquad \mu_{e} + \mu_{p} = \mu_{n} + \mu_{\nu}, \qquad n_{p} = n_{e} + n_{\mu},$$

where $\mu_{\nu} \approx 0$ and we have defined $n_{n/p} \equiv (n_B \pm n_I)/2$.

The CRUST: (mixed phase)

- **bubbles** of h-nuclear matter
- separated from a charged lepton gas.
- impose global neutrality instead
- + surface and Coulomb effects $\Rightarrow \Sigma$.

[Glendenning 00, Schmitt 20]

 $h-EoS + TOV Eqs. \Rightarrow Crust-core transition fully dynamical!$

Results: MR curves, deformabilities and EoS

Fits of to QCD vacuum properties [SS 04-05, Brunner+15] and to nuclear saturation properties. • $\Lambda(c)$ universality [Yagi+ 16]

 $(\lambda, M_{\rm KK}) + \Sigma$

Results: MR curves, deformabilities and EoS

 $(\lambda, M_{\rm KK}) + \Sigma$

New predictions for M, R and Λ

Systematics (2+1 parameters) + astrophysics = predictions!

We obtain new parameter-independent bounds:

Scan $(M_{\rm KK}, \lambda)$ -space for reasonable values of Σ , check phenomenology. Even more stringent constraints from restricting to the QCD window

	parameter-independent		QCD window	
	lower bound	upper bound	lower bound	upper bound
$M_{ m max} \left[M_{\odot} ight]$	(2.1)	2.46	2.11	2.40
$R_{1.4}$ [km]	11.9 (11.5)	(14.3)	12.4	14.1
$R_{2.1}[{ m km}]$	(11.4)	13.7 (16.3)	(11.4)	13.7
$\Lambda_{1.4}$	277 (70)	(580)	286	(580)
$\Lambda_{2.1}$	9.13	49.3	10.1	43.7

We are interested in ...

- including the pion mass and condensate (important?), allowing for a more realistic response from baryons (*in preparation* [NK,Schmitt 19])
- $\bullet\,$ computing Σ dynamically and constructing an inner crust.
- analysing the effect of temperature and the possibility of quark cores (NS from deconfined model). What about mergers? [Ecker et al 19]
- checking if quarkyonic matter can play a role. [NK,Schmitt 20]
- constructing more realistic protons+neutrons (w.i.p.)
- computing transport properties of our NS matter. [Hoyos et al 20,21]
- considering magnetic fields [Rehban et al 08+] and the possibility of color superconductivity [Bitaghsir Fadafan et al 18] [Henriksson et al 19]

Thank you! Any questions?