Reaching percolation and conformal limits in neutron stars

M. Marczenko, L. McLerran, K. Redlich, C. Sasaki

based on arXiv:2207.13059 [nucl-th]

XVth Quark Confinement and the Hadron Spectrum 02.08.2022, University of Stavanger, Norway

Big question: quark matter in neutron stars?

Annala et al Nature Physics (2020)

We follow the overall prescription:

Piecewise-linear interpolation of c_s^2 + pQCD + $2M_{\odot}$ + tidal deformability

used, e.g., in Annala et al (2020); Altiparmak et al (2022); Ecker, Rezzolla (2022)

Speed of sound

General peak-dip structure Altiparmak et al (2022); Ecker, Rezzolla (2022)

- \blacksquare Local maximum around $\epsilon_{\rm peak}=0.587~{\rm GeV}/{\rm fm}^3$ with $c_s^2>1/3$
- Peak similar to quarkyonic description of matter McLerran, Reddy PRL (2019)

Speed of sound: dense vs hot QCD

- Dominance of repulsive interactions MAX: $\epsilon = 0.587^{+0.112}_{-0.092} \text{ GeV/fm}^3$, $n = 0.56^{+0.09}_{-0.08} \text{ fm}^{-3}$
- Onset of quark or quarkyonic matter? McLerran, Reddy (2019)

- Hot QCD: $c_s^2 < 1/3$
 - Attractive interactions with resonance formation
 - MIN: $\epsilon = 0.42 \pm 0.06 \text{ GeV}/\text{fm}^3$
 - Chiral symmetry restoration and guark deconfinement

NON-MONOTONICITY \implies CHANGE OF PHASE

Percolation theory and deconfinement

Percolation theory: $n_c = 1.22/V_0$ see, e.g., Satz (1998); Castorina *et al* (2009); Fukushima *et al* (2020)
Avg. proton radius: $R_0 = 0.80 \pm 0.05$ fm Wang *et al* (2022) $\rightarrow n_c = 0.57^{+0.12}_{-0.09}$ fm⁻³

 \blacksquare Pb-Pb collisions at $\sqrt{s}=2.76~{\rm TeV}$ \rightarrow $\mathit{n_c}=0.60\pm0.07~{\rm fm}^{-3}$ at phase boundary

 ${\sf Percolation\ threshold} \Longleftrightarrow {\sf maximum\ of\ speed\ of\ sound}$

Appearence of maximum in c_s^2 \downarrow Change in medium composition \downarrow Limited applicability of hadronic (mean-field) models

However proton radius not well established

Wang et al (2022)

Chiral symmetry (partially) restored already in the hadronic phase

Chiral symmetry is fundamental and should be included in NS EoS Marczenko et al Ap.JL (2022)

parity doublet model

DeTar, Kunihiro PRD (1989); Jido et al PTEP (2000); Zschiesche et al PRC (2007)

+ deconfinement

Benic, Mishustin, Sasaki PRD (2015), Steinheimer et al PRC 2011, Marczenko et al A&A (2020)

+ topology at Fermi surface

Kojo PRD (2021)

Trace anomaly: $\Delta = \frac{1}{3} - \frac{p}{\epsilon} \longrightarrow c_s^2 = \frac{1}{3} - \Delta - \epsilon \frac{d\Delta}{d\epsilon}$ Trace anomaly monotonic even if c_s^2 has a maximum $\Delta \simeq 0$ at $\epsilon \approx 1 \text{ GeV/fm}^3$ Fujimoto *et al* (2022)

(see talk by Yuki Fujimoto; Section F; Thursday)

Sound speed and trace anomaly at the center of heaviest NS

Matter almost conformal in the cores of maximally massive NS see also Annala et al Nature Physics (2020); Ecker, Rezzolla (2022)

Fate of trace anomaly at large densities

 $\begin{array}{l} \bullet \ \Delta(\epsilon > \epsilon_{\rm TOV}) \geqslant 0 \rightarrow {\rm consquences \ for \ mass-radius \ profile \ {}_{\rm Fujimoto \ et \ al} \ (2022) \end{array} \\ \\ \bullet \ \Delta(\epsilon > \epsilon_{\rm TOV}) < 0 \rightarrow {\rm reach \ pQCD} \rightarrow {\rm large \ fluctuations} \rightarrow {\rm remnants \ of \ criticality} \end{array}$

Remnants of criticality: baryon density fluctuations

• Fluctuations \rightarrow probes of criticality in BES

Stephanov et al (1999); Karsch et al (2011); Friman et al (2011); Bazavov et al (2012)

Comulants sensitive to critical fluctuations:

$$\hat{\chi}_B \equiv \frac{\chi_B}{\mu_B^2} = \frac{n_B}{\mu_B^3 c_s^2}$$

- In QCD: chiral CP $\in Z(2) \rightarrow$ divergence at CP
- Min of $c_s^2 \sim {\sf Max}$ of $\Delta \sim {\sf Max}$ of χ_B
- \blacksquare Global maximum \rightarrow largest fluctuations

• >93% beyond gravitational stability • $\epsilon_{\chi} = 4.084^{+1.834}_{-1.275} \text{ GeV/fm}^3$

Remnants of criticality with large χ_B unlikely to be found in the cores of NSs

- Centers of maximally massive NS may contain conformal matter
- Maximum in c_s^2 consistent with percolation threshold
- Remnants of criticality unlikely to be found in NSs

Thank You