Merger of a Neutron Star with a Black Hole: one-family versus two-families scenario

Francesco Di Clemente, Alessandro Drago, Giuseppe Pagliara, 2022, The Astrophysical Journal, 92944

Francesco Di Clemente
August 2nd, 2022
The XVth Quark confinement and the Hadron spectrum conference - Stavanger U.

The two-families scenario

Dashed orange: MR constraint on GW170817.
Red and dark red: analysis on NICER data of J0740+6620 from Riley et al. (2021) and from Miller et al. (2021).

One-family \rightarrow one hadronic equation of state which is rather stiff as NICER results suggest

Two-families \rightarrow coexistence of hadronic star branch and quark star branch.

BH-NS merger - How to test the twofamilies scenario?

BH-NS merger - How to test the twofamilies scenario?

Gravitational unbound mass from semianalytical models from Barbieri et al. (2020), Foucart et al. (2018), Kawaguchi et al. (2016)

Calculations only for the hadronic branch.

$$
\begin{aligned}
M_{\mathrm{out}}= & M_{\mathrm{NS}}^{\mathrm{b}}\left[\max \left(\alpha \frac{1-2 \rho}{\eta^{1 / 3}}-\beta \tilde{R}_{\mathrm{ISCO}} \frac{\rho}{\eta}+\gamma, 0\right)\right]^{\delta} \\
M_{\mathrm{dyn}} & =M_{\mathrm{NS}}^{\mathrm{b}}\left\{\operatorname { m a x } \left[a_{1} q^{-n_{1}}\left(1-2 C_{\mathrm{NS}}\right) / C_{\mathrm{NS}}+\right.\right. \\
& -a_{2} q^{-n_{2}} \tilde{R}_{\mathrm{ISCO}}\left(\chi_{\mathrm{BH}, \|}\right)+ \\
& \left.\left.+a_{3}\left(1-M_{\mathrm{NS}} / M_{\mathrm{NS}}^{\mathrm{b}}\right)+a_{4}, 0\right]\right\}
\end{aligned}
$$

BH-NS merger

A region of the parameter space in which we expect a strong kilonova signal in the one-family case, correspond to a weak kilonova signal in the two-families scenario.

Weak kilonova signal expected from a quark star-black hole merger (but we need more simulations!)

MPA1

SFHO+HD

BH-NS merger - a toy model for observations

Original toy-model by Ng et al. (2018, PRD, 98, 083007) $\mathcal{L}\left(M_{\mathrm{NS}}, M_{\mathrm{BH}}, \chi_{\mathrm{eff}}\right)=\mathcal{N}\left(\psi\left(M_{\mathrm{NS}}, M_{\mathrm{BH}}, \chi_{\mathrm{eff}}\right) ; \psi_{0}, \sigma_{\psi}\right) \times$ $\mathcal{N}\left(\eta\left(M_{\mathrm{NS}}, M_{\mathrm{BH}}\right) ; \eta_{0}, \sigma_{\eta}\right)$

Our toy-model with an additional constraint on the chirp mass
$\mathcal{L}_{\text {total }}\left(M_{\mathrm{NS}}, M_{\mathrm{BH}}, \chi_{\mathrm{eff}}\right)=\mathcal{L}\left(M_{\mathrm{NS}}, M_{\mathrm{BH}}, \chi_{\mathrm{eff}}\right) \times$

$$
\mathcal{N}\left(M_{\text {chirp }}\left(M_{\mathrm{NS}}, M_{\mathrm{BH}}\right) ; M_{\text {chirp }, 0}, \sigma_{M_{\mathrm{chirp}}}\right)
$$

Toy-model which emulates Ligo-VIRGO uncertanties and correlation between physical quantities.

More realistic prediction including uncertanties.

Predictions based on oncoming update of the interferometers (O 4 run) and on nextgeneration telescope (Vera Rubin Observatory)

BH-NS merger - a toy model for observations

Example of the spin-mass correlation we obtain from the toy model using central values and uncertantiers based on LV analysis of GW200115

Toy-model which emulates Ligo-VIRGO uncertanties and correlation between physical quantities.

More realistic prediction including uncertanties.

Predictions based on oncoming update of the interferometers (O 4 run) and on nextgeneration telescope (Vera Rubin Observatory)

BH-NS merger - simulate an observation

Example of the spin-mass correlation we obtain from the toy model using central values and uncertantiers based on LV analysis of GW200115

1 - for each event we want to analyze, we generate an ensemble of points according to the toy-model likelihood.

2 - we compute $\mathbf{M}_{\mathrm{dyn}}$ for each generated point, the bolometric luminosity, the bolometric magnitude and the bolometric correction for a single band filter (g-band filter, $\lambda_{\text {eff }}=4830 \AA$ A) using a model developed by Kawaguchi et al. (2016, ApJ, 825, 52)

3 - we compute the fraction of the sample which generates a visible magnitude smaller than the limiting one of $\angle S S T$ telescope.

BH-NS merger - LVK O4 run

Run	BNS	NSBH	BBH
	Sensitive volume ($\left.10^{6} \mathrm{Mpc}^{3}\right)^{\text {iii }}$		
03	$17.5{ }_{-1.3}^{+14}$	$101.11_{-6.1}^{16.4}$	$1047{ }_{-49}^{+50}$
04	$109.0{ }_{-65}^{+67}$	$558{ }_{-26}^{+26}$	$44500_{-130}{ }^{130}$
05	$590{ }_{-28}^{+29}$	2787_{-87}^{+89}	$19950{ }_{-310}^{+310}$
	Annual number of detections:iiliv		
03	5_{-6}^{+14}	$13+9$	24_{-12}^{+18}
04	34_{-25}^{+78}	${ }^{72}-38$	106_{42}^{+65}
05	190_{-130}^{+410}	360_{-180}^{360}	480_{-180}^{+280}
	Median luminosity distance (Mpc) ${ }^{\text {i }}$		
03	$176.1{ }_{-5.5}^{6 .}$	${ }_{337.6}{ }_{-9,6}^{+109}$	871_{-28}^{+38}
04	$352.8{ }_{-9.8}^{+10.3}$	${ }_{621}{ }_{14}^{+16}$	$1493-25$
05	${ }_{620}{ }_{17}^{+16}$	$1132+19$	2748_{-34}^{30}

BH-NS merger - expectations

If we have an event at $\mathbf{2 0 0}$ Mpc having:
5 Mø central value of BH mass;
1.3 Mo central value of NS mass;
0.2 central value of effective adimensional spin parameter of the system

An observation with NO EM COUNTERPART after 1 day from the merger in the g-band (within the observing range in magnitude of LSST of VRO) would be compatible with

```
SFHO+HD 90%
    DD2 17%
    MPA1 33%
    AP3 47%
SFHO+HD 98\%
    DD2 4\%
    MPA1 21\%
    AP3 45\%


Limiting magnitude for several telescopes. Chase et al. (2021)

\section*{BH-NS merger - expectations}

Roman: 0.28 square degrees
LSST: 9.6 square degrees

LSST will be a game changer for the physics of compact stars!


Limiting magnitude for several telescopes. Chase et al. (2021)

\section*{BH-NS merger - expectations}
\begin{tabular}{||c|cccc||}
\hline & SFHO+HD & AP3 & MPA1 & DD2 \\
\hline \hline 13ns5bh0c_1s & 0.01 & 0.13 & 0.26 & 0.48 \\
\hline 13ns5bh0c_05s & 0.00 & 0.04 & 0.18 & 0.52 \\
\hline \hline 13ns7bh0c_1s & 0.00 & 0.00 & 0.00 & 0.05 \\
\hline 13ns7bh0c_05s & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \hline 13ns5bh2c_1s & 0.10 & 0.53 & 0.67 & 0.83 \\
\hline 13ns5bh2c_05s & 0.02 & 0.55 & 0.79 & 0.96 \\
\hline \hline 13ns7bh2c_1s & 0.00 & 0.08 & 0.19 & 0.36 \\
\hline 13ns7bh2c_05s & 0.00 & 0.02 & 0.07 & 0.36 \\
\hline \hline 13ns5bh5c_1s & 0.64 & 0.95 & 0.97 & 0.99 \\
\hline 13ns5bh5c_05s & 0.82 & 1.00 & 1.00 & 1.00 \\
\hline \hline 13ns7bh5c_1s & 0.23 & 0.63 & 0.72 & 0.81 \\
\hline 13ns7bh5c_05s & 0.15 & 0.84 & 0.97 & 1.00 \\
\hline \hline
\end{tabular}

Compatibility of each considered equation of state with a KN
signal observation after 1 day from the merger. We are considering two different uncertainties on the measurements of

\(\begin{array}{ll}\star & \text { Roman } \\ \star & \text { LSST } \\ \star & \text { DECam } \\ \bullet & \text { PRIME } \\ \Delta & \text { BlackGEM } \\ \bullet & \text { VISTA } \\ \bullet & \text { ULTRASAT } \\ \star & \text { WINTER } \\ \triangleright & \text { GOTO } \\ \square & \text { ZTF } \\ \bullet & \text { MeerLICHT } \\ \nabla & \text { Swift } \\ \diamond & \text { DDOTI } \\ & \end{array}\)

Limiting magnitude for several telescopes. Chase et al. (2021)

\section*{Conclusions and Remarks}
- Very strong difference in observation of KN signal by BHNS merger between onefamily and two-families
- The absence of a KN can be interpreted as a softening in the EoS
- We still need new simulations of Strange Star - Black Hole merger

\section*{Thank you!}

Francesco Di Clemente, Alessandro Drago, Giuseppe Pagliara, 2022, The Astrophysical Journal, 92944

Istituto Nazionale di Fisica Nucleare
Sezione di Ferrara

NEUtron star MATter Theory```

