

Istituto Nazionale di Fisica Nucleare Sezione di Ferrara NEUMATT

NEUtron star MATter Theory

Università degli Studi di Ferrara

Merger of a Neutron Star with a Black Hole: one-family versus two-families scenario

Francesco Di Clemente, Alessandro Drago, Giuseppe Pagliara, 2022, The Astrophysical Journal, 929 44

Francesco Di Clemente

August 2nd, 2022

The XVth Quark confinement and the Hadron spectrum conference – Stavanger U.

The two-families scenario

One-family \rightarrow one hadronic equation of state which is rather stiff as NICER results suggest

Two-families \rightarrow coexistence of hadronic star branch and quark star branch.

QS

Dashed orange: MR constraint on GW170817. Red and dark red: analysis on NICER data of J0740+6620 from Riley et al. (2021) and from Miller et al. (2021).

BH-NS merger – How to test the two-families scenario?

BH-NS merger – How to test the two-families scenario?

Gravitational unbound mass from **semianalytical models** from Barbieri et al. (2020), Foucart et al. (2018), Kawaguchi et al. (2016)

Calculations only for the hadronic branch.

$$M_{\rm out} = M_{\rm NS}^{\rm b} \left[\max \left(\alpha \frac{1 - 2\rho}{\eta^{1/3}} - \beta \tilde{R}_{\rm ISCO} \frac{\rho}{\eta} + \gamma, 0 \right) \right]^{\delta}$$
$$M_{\rm dyn} = M_{\rm NS}^{\rm b} \left\{ \max \left[a_1 q^{-n_1} (1 - 2C_{\rm NS}) / C_{\rm NS} + -a_2 q^{-n_2} \tilde{R}_{\rm ISCO} (\chi_{\rm BH, ||}) + a_3 (1 - M_{\rm NS} / M_{\rm NS}^{\rm b}) + a_4, 0 \right] \right\}$$

BH-NS merger

A region of the parameter space in which we expect a **strong kilonova** signal in the one-family case, correspond to a **weak kilonova** signal in the two-families scenario.

Weak kilonova signal expected from a quark star-black hole merger (but we need more simulations!)

BH-NS merger – a toy model for observations

Original toy-model by Ng et al. (2018, PRD, 98, 083007)

 $\mathcal{L}(M_{\rm NS}, M_{\rm BH}, \chi_{\rm eff}) = \mathcal{N}(\psi(M_{\rm NS}, M_{\rm BH}, \chi_{\rm eff}); \psi_0, \sigma_{\psi}) \times \mathcal{N}(\eta(M_{\rm NS}, M_{\rm BH}); \eta_0, \sigma_{\eta})$

Our toy-model with an additional constraint on the chirp mass

 $\mathcal{L}_{\text{total}}(M_{\text{NS}}, M_{\text{BH}}, \chi_{\text{eff}}) = \mathcal{L}(M_{\text{NS}}, M_{\text{BH}}, \chi_{\text{eff}}) \times \mathcal{N}(M_{\text{chirp}}(M_{\text{NS}}, M_{\text{BH}}); M_{\text{chirp},0}, \sigma_{M_{\text{chirp}}})$

Toy-model which emulates Ligo-VIRGO uncertanties and correlation between physical quantities.

More realistic prediction **including uncertanties**.

Predictions based on oncoming **update of the interferometers** (O4 run) and on **nextgeneration telescope** (Vera Rubin Observatory)

BH-NS merger – a toy model for observations

Example of the spin-mass correlation we obtain from the toy model using central values and uncertantiers based on LV analysis of GW200115

Toy-model which emulates Ligo-VIRGO uncertanties and correlation between physical quantities.

More realistic prediction **including uncertanties**.

Predictions based on oncoming **update of the interferometers** (O4 run) and on **nextgeneration telescope** (Vera Rubin Observatory)

BH-NS merger – simulate an observation

Example of the spin-mass correlation we obtain from the toy model using central values and uncertantiers based on LV analysis of GW200115

1 - for each event we want to analyze, we generate an ensemble of points according to the toy-model likelihood.

2 - we compute M_{dyn} for each generated point, the **bolometric luminosity**, the **bolometric magnitude** and **the bolometric correction** for a single band filter (*g-band* filter, λ_{eff} = 4830 Å) using a model developed by Kawaguchi et al. (2016, ApJ, 825, 52)

3 - we compute the fraction of the sample which generates a **visible magnitude** smaller than the limiting one of *LSST* telescope.

BH-NS merger – LVK O4 run

Polina Petrov et al 2022 ApJ 924 54

BH-NS merger – expectations

If we have an event at 200 Mpc having:

5 Mo central value of BH mass;1.3 Mo central value of NS mass;0.2 central value of effective adimensional spin parameter of the system

An observation with **NO EM COUNTERPART** after 1 day from the merger in the g-band (within the observing range in magnitude of LSST of VRO) would be compatible with

SFHO+HD <mark>90%</mark>	SFHO+HD <mark>98%</mark>		
DD2 17%	DD2 4%		
MPA1 <mark>33%</mark>	MPA1 21%		
AP3 <mark>47%</mark>	AP3 <mark>45%</mark>		

Limiting magnitude for several telescopes. Chase et al. (2021)

 $\sigma ~\sim~ \sigma_{\text{LV}}$

 $\sigma \sim 0.5 \sigma_{\text{LV}}$

BH-NS merger – expectations

Roman: 0.28 square degrees LSST: 9.6 square degrees

LSST will be a game changer for the physics of compact stars!

Limiting magnitude for several telescopes. Chase et al. (2021)

BH-NS merger – expectations

	SFHO+HD	AP3	MPA1	DD2
13ns5bh0c_1s	0.01	0.13	0.26	0.48
13ns5bh0c_05s	0.00	0.04	0.18	0.52
13ns7bh0c_1s	0.00	0.00	0.00	0.05
13ns7bh0c_05s	0.00	0.00	0.00	0.00
13ns5bh2c_1s	0.10	0.53	0.67	0.83
13ns5bh2c_05s	0.02	0.55	0.79	0.96
13ns7bh2c_1s	0.00	0.08	0.19	0.36
13ns7bh2c_05s	0.00	0.02	0.07	0.36
13ns5bh5c_1s	0.64	0.95	0.97	0.99
13ns5bh5c_05s	0.82	1.00	1.00	1.00
13ns7bh5c_1s	0.23	0.63	0.72	0.81
13ns7bh5c_05s	0.15	0.84	0.97	1.00

Compatibility of each considered equation of state with a KN signal observation after 1 day from the merger. We are considering two different uncertainties on the measurements of the central values.

Limiting magnitude for several telescopes. Chase et al. (2021)

Conclusions and Remarks

- Very strong difference in observation of KN signal by BHNS merger between onefamily and two-families
- The absence of a KN can be interpreted as a softening in the EoS
- We still need new simulations of Strange Star Black Hole merger

Thank you!

Francesco Di Clemente, Alessandro Drago, Giuseppe Pagliara, 2022, The Astrophysical Journal, 929 44

Università degli Studi di Ferrara