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TYPICAL LHC PROCESSING CHAIN
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Particles 
(real/simulated)

Reconstruction
● Generic 

optimisation 
of algorithms

● Fixed 
working 
points

● Expert-interpr
etable 
data-represe
ntations (PID)

Detection 
(real/simulated)

● Track first, 
destroy later

● Kinematic 
precision

● Dedicated 
sub-detectors

● Design 
convenience 
over analysis 
convenience

Analysis
● Signal/background 

separation

Measurement
● Domain-driven 

categorisation
● Separate by 

decay channel, 
combine later

Many of these are “necessary evils” 
for HEP! Time, interpretation, MC 
corrections, etc.

Isolated optimisation → paired / end-to-end optimisation?

Sources: detector cds.cern.ch/record/2120661/, reco cds.cern.ch/record/1406073, analysis & measurement CMS-FTR-18-019 
 

https://cds.cern.ch/record/2120661/
http://cds.cern.ch/record/1406073
https://cds.cern.ch/record/2652549


WHAT IF…

• We can already do measurement-aware 
analysis optimisation, e.g.:

• INFERNO (de Castro & Dorigo, 2018)

• NEOS (Simpson & Heinrich, 2022) 

• What about going further?
• Measurement-aware 

detector-optimisation

• CERN LHC-style detectors = 
huge-parameter space + complicated 
simulation and analysis algorithms

• Let’s start with a simple use-case: muon 
tomography
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Time 
per 
sample

Parameters

1

2

3
(Not to scale)

1. Grid/random search

2. Bayesian optimisation, Simulated annealing, 
genetic algorithm, particle swap 
optimisation, … 

3. Gradient-based optimisation: Newtonian, 
gradient descent, BFGS, …

~LHC

~Tomography

https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/2203.05570


TOMOGRAPHY VIA MULTIPLE SCATTERING

• Consider a volume with unknown 
composition

• E.g. Shipping container, archeological site, 
nuclear waste, industrial machinery

• Want to infer properties of the volume:
• E.g. build a 3D map of elemental 

composition

• Cosmic muons scattered by volume 
according to radiation-length (X0 [m]) of 
elements in material

• Measure muons above and below volume

• Kinematic changes provide info on 
material composition
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High X0 = low 
scattering

Low X0 = high 
scattering

Detector

Detector

High X0 
material

Low X0 
material

X0 = average distance between 
scatterings



PROBLEM

• Each use-case likely to have a budget:
• E.g. financial, heat, power, spatial, imaging 

time

• How should detectors be positioned to 
best function in each use case subject to 
constraints?

• Domain knowledge, experience, and 
intuition can help

• But solutions likely to be based on 
heuristics and proxy objectives (e.g. 
lowest uncertainty on muon-path angles)
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Example 1:
Muons 
measured 
precisely but 
less efficiently

Example 2:
Muons 
measured less 
precisely but 
more 
efficiently



TOMOPT

• Python package for differential optimisation of 
muon-tomography detectors

• Modular design
• PyTorch provides autodiff
• Still underdevelopment; aim is an open-source package

• First, express the entire inference chain as a 
differentiable system

• We can now compute the analytical effects of detector 
parameters (position, size, resolution, etc.) on system 
outputs

• Now express the desired task as a loss function
• E.g. error on X0 predictions, detector costs, time to 

achieve desired resolution
• We can now backpropagate the loss gradient to 

detector parameters and optimise via gradient descent
• Just like a neural network
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Muons

Detector 
params

Known 
volumes

Predicted 
volumes

Loss

Cost

Detector 
params

Predicted 
volumes

Loss
Forwards pass Backwards pass



PASSIVE VOLUME SPECIFICATION

• We can simulate different passive volumes 
by splitting the space in voxels

• Each voxel can be a different material

• Muons are scattered according to material 
density (X0) of the voxels they pass 
through

• We can randomly generate typical 
volumes with pre-specified characteristics

• These can help simulate different tasks 
and situations
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Uranium 
block 
hidden 
amongst 
scrap 
metal

Furnace 
filled with 
molten 
metal and 
impurities



DETECTOR SPECIFICATION

• Detectors panels are placed above and 
below the volume

• Each panel records a hit when the muons 
passes through

• We will aim to learn the optimal size and 
position of each detector panel
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Passive
Passive
Passive
Passive
Passive

Detectors

Detectors



DETECTOR MODELLING

• Assume commercial detectors ⇒ fixed 
resolution, fixed efficiency, fixed cost per 
m2

• Optimise XYZ position and XY span

• But, muons either hit or miss detectors. 
How can we make hits be differentiable 
w.r.t detector parameters?

• Instead, let resolution and efficiency be 
distributed, e.g. Gaussian centred on panel, 
with width set by panel span

• The PDF at the muon position is now diff. 
w.r.t panel position and span

• Can further generalise by using Gaussian 
Mixture model
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Both muons 
recorded, but 
with different 
resolutions

Plot: Max Lamparth



INFERENCE

• First: use the hits to reconstruct the 
muons entering and exiting the volume

• Then: use the changes in muon trajectory 
to infer properties of the volume

• Could simply predict the X0 of each voxel
• Even better: compute a task-specific 

summary statistic
• We can also include deep learning 

algorithms here
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Voxel X0 predictions
High density block
Low density background

Dedicated summary-statistic for 
classifying volumes with uranium blocks

Voxel-wise 
GNN  
prediction for 
material class

WORK IN PROGRESS!



LOSSES AND COST

• The loss of the system should contain two 
components:

• The error on the predictions
• E.g. MSE for voxel X0, or 

cross-entropy for class predictions
• The cost of the detectors

• Cost component smoothly “turns on” 
near target budget

• Heavily penalises over-budget 
detectors

• Loss scaled according to error loss
• Treat detector just like a neural network:

• Differentiate the loss w.r.t. the learnable 
(detector) parameters and update with 
gradient descent
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EXAMPLE

• Task is to infer presence of uranium block in 
container filled with scrap metal

• Inference uses a dedicated summary statistic
• The U block can be anywhere in the volume, 

so intuitively expect the detectors should be 
placed centrally in XY over the volume

• Detectors start in corner of volume and 
optimisation does indeed move them to 
cover the volume

12

• Optimised 
detector provides 
large 
improvement to 
ROC AUC

WORK IN PROGRESS!



GETTING INVOLVED

• MODE Collaboration involved in several 
other projects:

• ECal, hybrid HCal, Cherenkov arrays, … 
• Recent whitepaper arXiv:2203.13818
• Open to new members (contact)
• TomOpt also welcoming new 

contributors: giles.strong@outlook.com

• Second MODE workshop on differentiable 
programming

• 12-16 September, Crete & online
• https://indico.cern.ch/event/1145124/ 
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https://mode-collaboration.github.io/#home
https://arxiv.org/abs/2203.13818
https://mode-collaboration.github.io/#contact
mailto:giles.strong@outlook.com
https://indico.cern.ch/event/1145124/


ONGOING DATA CHALLENGE

• Develop your own inference algorithm to 
identify Roman walls in Colchester, 
Britain’s oldest city

• 130,000 samples of simulated 
muon-tomography scans

• Challenge is part of upcoming MODE 
workshop, but labelled test data will be 
made available

• See the starter pack repo for details
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Convert 3D 
measurements 
to segmented 
images

https://github.com/GilesStrong/mode_diffprog_22_challenge


SUMMARY

• Measurement-aware detector-optimisation = challenging but potentially 
rewarding task
• Doesn’t aim to replace detector experts; provide tools to make more informed 

design choices
• Currently testing on a simplified case: muon tomography

• TomOpt indicates this is possible, and is under rapid development
• Publications and open-source package this year

• MODE is an active collaboration in this area: lot’s of opportunities to get 
involved
• E.g. ongoing data challenge & workshop
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BACKUPS
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VOLUME INFERENCE: POCA

• Point of Closest Approach: Assign entirety of 
muon scattering to single point

• Invert analytic scattering model to compute 
X0• Average X0 predictions in each voxel

• We know, though, that the muon scattering 
results from multiple interactions throughout 
the volume

• Assigning the whole scattering to a single 
point inherently leads to underestimating the 
X0• Can slightly improve by weighting muon 
predictions by their X0 uncertainty

• Can also allow muons to predict in multiple 
voxels according to their PoCA uncertainty
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• Block of lead 
(X0=0.005612m)

• Surrounded by 
beryllium 
(X0=0.3528m)

• Predictions highly 
biased to 
underestimate X0• Lead block clearly 
visible

• but high z uncertainty 
in scatter location 
causes ‘ghosting’ 
above and below 

WORK IN PROGRESS!



VOLUME INFERENCE: SUMMARY STATISTIC

• In some cases, we don’t care about 
predicting voxel X0 values, but instead 
determining some higher-level property of 
the volume

• E.g. is there uranium located anywhere in 
the volume?

• For this we can try to construct a 
summary statistic based on the X0 
predictions

• Statistics must be fully differentiable
• Ideally, should also be invariant to scale 

X0 predictions, to mitigate PoCA bias
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• E.g. for a uranium-block search, compare 
the mean of the lowest estimated to X0 
voxels to the mean of the rest

• No block => small difference
• Block => bimodal X0 distribution => large 

difference

WORK IN PROGRESS!



VOLUME INFERENCE: GNN

• Can use a deep learning approach

• Consider two-stage graph:
• Each voxel has a graph built from muons

• GNN+aggregation learns a 
representation of the muons specific 
to each voxel, by sharing features 
between muons

• Each volume has a graph built from voxels
• Second GNN+aggregation learns a 

representation of the voxels specific 
to each voxel, by sharing 
muon-representations between 
voxels.
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(voxels, muons, features)

GravNet+Agg

(voxels, muon rep)

(voxels, voxels, muon rep + vox feats)

GravNet 2+Agg

(voxels, voxel rep)



VOLUME INFERENCE: GNN

• At this point, we have a representation per 
voxel.

• We can transform these into X0 
predictions (class/value) with a DNN

• We can easily aggregate over the voxels to 
produce a volume representation.

• This can then be further transformed into 
the appropriate prediction shape

• Further details in my IML talk
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(voxels, voxel representation)

DNN

(voxels, voxel class)

DNN

(Volume class)

Aggregate over voxels

(volume representation)

WORK IN PROGRESS!

https://indico.cern.ch/event/1078970/timetable/?view=standard#42-two-level-graphs-for-muon-t

