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TYPICAL LHC PROCESSING CHAIN

Particles

(real/simulated) Isolated optimisation — paired / end-to-end optimisation?

Detection Reconstruction Analysis Measurement
(real/simulated) e  Generic e  Signal/background e  Domain-driven
° Track first, optlmlse_ltlon separation categorisation
destroy later of algorithms
e  Kinematic e  Fixed e  Separate by
precision working decay channel,
° Dedicated points combine later
sub-detectors ° Expert-interpr
e  Design etable Many of these are “necessary evils”
convenience data-represe

' . . .
over analysis ntations (PID) for HEP! Time, interpretation, MC
convenience corrections, etc.

Sources: detector cds.cern.ch/record/2120661/, reco cds.cern.ch/record/1406073, analysis & measurement CMS-FTR-18-019


https://cds.cern.ch/record/2120661/
http://cds.cern.ch/record/1406073
https://cds.cern.ch/record/2652549

WHAT IF...

~Tomography

~LHC
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Time 2

. oo . per (Not to scale)
analysis optimisation, e.g.: sample

® INFERNO (de Castro & Dorigo, 2018) |\\_
° NEOS (Simpson & Heinrich, 2022)

®  We can already do measurement-aware

v

®  What about going further? Parameters

®  Measurement-aware | .  Grid/random search
detector-optimisation 2

® CERN LHC-style detectors =

huge-parameter space + complicated
simulation and analysis algorithms 3

Bayesian optimisation, Simulated annealing,
genetic algorithm, particle swap
optimisation, ...

Gradient-based optimisation: Newtonian,
gradient descent, BFGS, ...

®  Let’s start with a simple use-case: muon

tomography


https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/2203.05570

Consider a volume with unknown
composition

¢  E.g. Shipping container, archeological site,
nuclear waste, industrial machinery

®  Want to infer properties of the volume:
¢  E.g. build a 3D map of elemental
composition
Cosmic muons scattered by volume
according to radiation-length (X [m]) of
elements in material

Measure muons above and below volume

Kinematic changes provide info on
material composition

TOMOGRAPHY VIA MULTIPLE SCATTERING

High X;
material

High X, = low Low X, = high
scattering scattering
X = average distance between

0
scatterings



®  Each use-case likely to have a budget:
¢ E.g financial, heat, power, spatial, imaging
time
® How should detectors be positioned to

best function in each use case subject to
constraints?

¢ Domain knowledge, experience, and
intuition can help

But solutions likely to be based on
heuristics and proxy objectives (e.g.
lowest uncertainty on muon-path angles)

PROBLEM
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Example |:
Muons
measured
precisely but
less efficiently

=£

Example 2:
Muons
measured less
precisely but
more
efficiently



TOMOPT

®  Python package for differential optimisation of
muon-tomography detectors
° Modular design
° PyTorch provides autodiff

° Still underdevelopment; aim is an open-source package

®  First, express the entire inference chain as a
differentiable system

° We can now compute the analytical effects of detector
parameters (position, size, resolution, etc.) on system

e
outputs
®  Now express the desired task as a loss function
° E.g. error on X predictions, detector costs, time to
achieve desired resolution
®  We can now backpropagate the loss gradient to

detector parameters and optimise via gradient descent

° Just like a neural network

1181

Known
volumes Forwards pass Backwards pass



®  We can simulate different passive volumes
by splitting the space in voxels

° Each voxel can be a different material

®  Muons are scattered according to material

density (X)) of the voxels they pass
through

®  We can randomly generate typical
volumes with pre-specified characteristics

®  These can help simulate different tasks

and situations
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DETECTOR SPECIFICATION

¢ Detectors panels are placed above and
below the volume

®  Each panel records a hit when the muons
passes through

®  We will aim to learn the optimal size and
position of each detector panel




DETECTOR MODELLING

Assume commercial detectors = fixed \

resolution, fixed efficiency, fixed cost per

m2

Optimise XYZ position and XY span

Both muons
recorded, but
with different
resolutions

But, muons either hit or miss detectors.

How can we make hits be differentiable
w.r.t detector parameters?

Instead, let resolution and efficiency be

distributed, e.g. Gaussian centred on panel,
with width set by panel span

®  The PDF at the muon position is now diff.
w.r.t panel position and span

Can further generalise by using Gaussian
ixture model

0 1 2

Plot: Max Lamparth



INFERENCE
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First: use the hits to reconstruct the
muons entering and exiting the volume
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®  Even better: compute a task-specific Dedicated summary-statistic for

summary statistic classifying volumes with uranium blocks

® Then: use the changes in muon trajectory
to infer properties of the volume
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®  Could simply predict the X0 of each voxel
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®  We can also include deep learning
algorithms here
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LOSSES AND COST

Nyoxels ( X X )2
®  The loss of the system should contain two Lo = 1 0,7, True 0,7,Pred.
. rror —
components: N Nyoxels — w;
®  The error on the predictions —
®  E.g.MSE for voxel X, or
cross-entropy for class predictions ¢
®  The cost of the detectors 5
®  Cost component smoothly “turns on” 24
near target budget g,
° Heavily penalises over-budget 3
detectors g2
®  Loss scaled according to error loss 1
®  Treat detector just like a neural network: 0

*  Differentiate the loss w.r.t. the learnable 00 25 3075 o ms Bo 4 00

Cost
(detector) parameters and update with
gradient descent

L= EError + a'CCost



cover the volume

¢ Optimised
detector provides
large
improvement to
ROCAUC

12

Signal acceptance

0.0

EXAMPLE

® Task s to infer presence of uranium block in
container filled with scrap metal
®  Inference uses a dedicated summary statistic

®  The U block can be anywhere in the volume,

so intuitively expect the detectors should be
placed centrally in XY over the volume
®  Detectors start in corner of volume and
optimisation does indeed move them to

—— Start AUC = 0.679
—— Optimised AUC = 0.914
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¢ MODE Collaboration involved in several
other projects:
®  ECal, hybrid HCal, Cherenkov arrays, ...
®  Recent whitepaper arXiv:2203.13818

®  Open to new members (contact)

¢  TomOpt also welcoming new
contributors: giles.strong@outlool.com

® Second MODE workshop on differentiable
programming

[2-16 September, Crete & online
https://indico.cern.ch/event/| 145124/

GETTING INVOLVED

Overview of the sessions:

¢ Confirmed keynote speakers
o Adam Paszke (Google Brain): DEX
o Max Sagebaum (TU Kaiserslautern): High-performance Algorithmic Differentiation

Lectures and tutorials:
o Lecture: Differentiable Programming, Gradient Descent in Many Dimensions, and Design
Optimization (Pietro Vischia, UCLouvain)

Special events:

o Hackathon (Giles Strong, INFN Padova): the challenge will open on 1st August 2022, and
submissions will be open until September 5th, 2022. prizes (see below) will be given to the
winners of the challenge!

o Poster session: prizes (see below) will be given to the best posters!

Applications in muon tomography

Progress in Computer Science

Applications and requirements for particle physics

Applications and requirements in astro-HEP

Applications and requirements for neutrino detectors

Applications and requirements in nuclear physics experiments

Discussion on the status and needs of the discipline (one parallel session per each of the other
sessions)


https://mode-collaboration.github.io/#home
https://arxiv.org/abs/2203.13818
https://mode-collaboration.github.io/#contact
mailto:giles.strong@outlook.com
https://indico.cern.ch/event/1145124/

ONGOING DATA CHALLENGE

Layer 9

Layer 8

¢ Develop your own inference algorithm to

Convert 3D

- measurements
to segmented
images

identify Roman walls in Colchester,
Britain’s oldest city

Layer 7

Layer 6

® 130,000 samples of simulated
muon-tomography scans

Layer 5

v

sbEERERERE]

¢  Challenge is part of upcoming MODE

workshop, but labelled test data will be
made available

Layer 4

Layer 3

See the starter pack repo for details
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https://github.com/GilesStrong/mode_diffprog_22_challenge

SUMMARY

® Measurement-aware detector-optimisation = challenging but potentially
rewarding task

® Doesn’t aim to replace detector experts; provide tools to make more informed

design choices

®  Currently testing on a simplified case: muon tomography
® TomOpt indicates this is possible, and is under rapid development

® Publications and open-source package this year

® MODE is an active collaboration in this area: lot’s of opportunities to get

involved

E.g. ongoing data challenge & workshop



BACKUPS




®  Point of Closest Approach:Assign entirety of
muon scattering to single point

®  Invert analytic scattering model to compute

X
0
®  Average X predictions in each voxel
®  We know, though, that the muon scattering
results from multiple interactions throughout
the volume

®  Assigning the whole scattering to a single
point inherently leads to underestimating the
X

Can slightly improve by weighting muon
predictions by their X uncertainty

Can also allow muons to predict in multiple
voxels according to their PoCA uncertainty
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VOLUME INFERENCE: POCA

OR

Block of lead
(X0=0.0056 [2m)

Surrounded by
beryllium
(X,=0.3528m)
Predictions highly
biased to
underestimate X

Lead block clearly
visible

but high z uncertainty
in scatter location

causes ‘ghosting’
above and below



WORK IN PR

VOLUME INFERENCE: SUMMARY STATISTIC "

¢ E.g.for a uranium-block search, compare

® |n some cases, we don’t care about the mean of the lowest estimated to X0
predicting voxel X, values, but instead voxels to the mean of the rest
determining some higher-level property of ®  No block => small difference
the volume ¢ Block => bimodal X, distribution => large
®  E.g.is there uranium located anywhere in difference

the volume?

®  For this we can try to construct a 00 -
0 uranium
summary statistic based on the X, 175 sl
predictions 150

125

¢  Statistics must be fully differentiable

Density
=
o
(=]

Ideally, should also be invariant to scale

X0 predictions, to mitigate PoOCA bias >

25

00 +— ——— ; T . —
035 040 045 050 055 060 065 0.70
lowest_frac_diff_ratio

18



VOLUME INFERENCE: GNN

(voxels, muons, features)

¢ Can use a deep learning approach

¢  Consider two-stage graph:

Each voxel has a graph built from muons
®  GNN-+aggregation learns a (voxels, muon rep)

representation of the muons specific I
to each voxel, by sharing features
between muons

(voxels, voxels, muon rep + vox feats)

Each volume has a graph built from voxe

®  Second GNN-+aggregation learns a
representation of the voxels specific
to each voxel, by sharing
muon-representations between
voxels.

(voxels, voxel rep)



OR

VOLUME INFERENCE: GNN

(voxels, voxel representation)

¢ At this point, we have a representation per |
voxel. [ DNN ]
®  We can transform these into X0 l

predictions (class/value) with a DNN

0.11

_ (volume representation) (voxels, voxel class)
®  We can easily aggregate over the voxels to
produce a volume representation. l
®  This can then be further transformed into [ DNN %
the appropriate prediction shape l g

Target

Further details in my [IML tall (Volume class)

0.011 0.014 0.033

iron

0.0041  0.0037  0.0041  0.067

lead

beryllium

on
o6 Predicted

Target



https://indico.cern.ch/event/1078970/timetable/?view=standard#42-two-level-graphs-for-muon-t

