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© Introduction
© L-CNN
© NODE and application to Wilson flow

@ SU(2) toy model

Matteo Favoni (TU Wien) Applications of L-CNNs QCHS 2022



Introduction

Neural networks (NNs) are a widely used tool in many scientific areas
NNs are universal approximators of any given function

In general, symmetries in data are learnt, therefore only approximated
Good strategy: meet the requirements of the specific problem

In quantum field theories, symmetries play a key role

A desirable approach is to design NNs so that such symmetries are
respected

@ Example: translational symmetry is incorporated by construction in
convolutional neural networks (CNNs) (under certain circumstances)

@ Here: build NNs respecting gauge symmetries by construction
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Lattice gauge theory

@ Discretization of Yang-Mills theory
e Gauge links U

Us, = exp (igaAu(x+a/2)) € SU(N)
@ 1 x 1 loops W
Wx,,uu = Ux,,u Ux—l—,u,u Ux—l—,u—&—z/,—,u Ux—l—u,—u

@ Wilson action

SwlU] = ;2 Y Retrfl — Wi )

xeN p<v
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Gauge equivariance

o Lattice gauge transformations for &/ and W

TQUx,u = Ux,,uQ;rH_H, Q € SU(NC)

Ta Wi = QW2
@ Gauge equivariant function
g(Tald, ToW) = Tog(U, V)
e Gauge invariant function (e.g. observables, action)
g(Tald, ToW) = g(U, W)

@ The individual layers of a lattice gauge equivariant convolutional
neural network (L-CNN) are designed to respect gauge equivariance
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Preprocessing layer

U= {Uxu}
W = {Weuw}

Preprocessing layers (Plaq, Poly)

@ Preprocess input U to generate locally transforming objects W, i.e.
plaquettes and Polyakov loops Ly ,(U) = [ Uxkup

Plaqg, Poly : U — (U, W)
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Lattice gauge equivariant convolutions (L-Conv)

@ Properties of CNNs: compact kernels, weight sharing
@ Parallel transport of data W to common point using U

@ Avoid path dependence by restricting the kernel along the axis

VY4 § : f
L-Conv : Wx,,- = Wi j,uk Ux,kv,u Wx+k-u,j Ux7k~u
Jotsk

e Equivariant convolutions: (U, W) — (U, W)
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Equivariant bilinear layers (L-BL):

@ Multiplication of W's at same lattice point is equivariant

@ Allow the network to grow larger loops

L-BL: WY, = oW Wi,
j7k

e Bilinear layers: (U, W) x (U, W) = (U, W)
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Gauge equivariant activation functions (L-Act):

@ Multiplication of W with gauge invariant scalar functions a
L-Act : W, = a(TrW) Wy

e Activation functions: (U, W) — (U, W)
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Equivariant exponential layers (L-Exp):

e Equivariant method to modify links U — U’
e Multiplication of U with locally transforming SU(N,)

Uy, =exp (i > Bui Wil ) Uss

e Equivariant exponential layer: (U, W) — (U', W)
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Generate gauge invariant output (Trace)

@ Computes traces of W's: gauge invariant complex numbers
Trace : wy; =tr W, ; € C

@ No trainable parameters (“postprocessing”)

@ Gauge invariant output can be passed to traditional CNN
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Construction of arbitrary Wilson loops

@ Repeated applications of L-Conv and L-Bilin operations can be used
to generate arbitrarily sized Wilson loops if input W consists of
plaquettes (preprocessing layer Plaq)

(a) (b) (o)

@ Non-contractible loops can also be generated by including Polyakov
loops in the input W (preprocessing layer Poly)

@ Non-linear functions of Wilson loops are possible through L-Act,
Trace and passing gauge invariant output to traditional CNNs

@ L-CNNs are universal approximators for gauge invariant functions on
the lattice
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Performance of standard CNNs vs LCNNs

Benchmark problem: regression of Wilson loops from 1 x 1 to 4 x 4 on 2D
lattice
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True vs. predicted values for CNNs and L-CNNs for n x m Wilson loops
(best models)

Increasing loop size from left to right — increasingly harder problem
Deteriorating performance of baseline CNNs with increased loop size
Best L-CNN always beats best baseline CNN

Consistent performance of L-CNNs across all loop .and lattice sizes
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Regression on topological charge

Qplaq(T)

| | |
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Wilson flow time 7

@ L-CNN predictions vs. true values (MC) for

f f
_ laq __ Cuvpo U = Uxyuv Uxpo = Ux por
Quiag = > a¥™ = > 355t 2i 2i onan

x€EN xEN
8 x 243 configuration

@ Training on 4 x 83 lattices and testing performed also on larger
lattices with cooled configurations
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Neural ODEs

Neural ordinary differential equations (NODEs) are ODEs parametrized by
NNs (see e.g. arXiv:1806.07366)

dz
Frie f(z(t),0,1t)

z(t): time-dependent D-dimensional vector

f(z(t),6,t): NN parametrized by the weights 6 with a D-dimensional
output

Input: boundary value zy = z(tp)
Label: desired output vector z]

Prediction: final state vector z(t1) = zg + ft(t)l dt’ f(z(t'),6,t)
An ODE integrator (e.g. Euler, Runge-Kutta) is used for the state
evolution

Training: minimization of the loss function £(6) = (2% — z(t1))?
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Adaptation to Wilson flow

We study the equivariant flow equation

dUy u(t)
dt

= iH.[U(t), 0, t] Uy u(t)

e U(t): gauge link configuration

e H,[U(t),0,t]: NN parametrized by the weights 6 with a traceless and
hermitian output

@ Input: boundary value Uy = U(tp)

o Label: desired output U7

e Prediction: final configuration U(t;) found by the iterative application
of the exponential map U1 = exp (iH,[UM]At) UY),

@ Training: minimization of the loss function £(6) = ||U; — U(t1)|)?
(e.g. Frobenius norm)

Matteo Favoni (TU Wien) Applications of L-CNNs QCHS 2022 17 /24



SU(2) toy model

We solve the Wilson flow equation on the previous slide for a single-link
configuration in SU(2) with the action S[U] = Retr(U?). This action has
two minima: £1. If trU > 0 the link flows to the north pole (+1),
otherwise it flows to the south pole (—1).

1 1 ~
up = Etr(U), up = §tT(U0'i)a i = uj/ (g + i + 3)"?

-050

us
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SU(2) toy model

The traceless and hermitian matrix H[U(t), 0, t] is constructed with the
following steps

@ The complex entries of U are split into real and imaginary part
@ They are fed into a multi-layer perceptron with real weights
@ The output is recombined into a complex matrix

e Taking the anti-hermitian, [C],, = 2: (C—CT) — 2i:lva1Tr (c—ch),
projects the output onto su(2)

@ The application of the exponential map yields a matrix in SU(2)

Training is performed by choosing the Frobenius norm as loss function
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Testing

= Ground truth
—— Prediction
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Extrapolation to larger times

= Ground truth
—— Prediction
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Dataset

If the time steps are too large most samples flow too close to the poles
and learning becomes harder
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Testing

= Ground truth
—— Prediction
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Conclusions and outlook

Conclusions
@ L-CNNs are gauge equivariant NNs that can be applied to lattice
problems

@ Better performance in regression tasks compared to traditional NNs

@ They can be applied to the modification of gauge link configurations

@ A minimal example of a Wilson flow with a single link has been
successfully solved

Next steps

@ Implement the adjoint sensivity method to save memory (done for
u(1))

@ Extend the toy model to proper lattices

@ Apply the L-CNNs to Wilson flows
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