Composite dynamics in Sp $(2 N)$ gauge theories
 Jong-Wan Lee (Pusan National University)

In collaboration with E. Bennett, D. K. Hong, H. Hsiao, C.-J. D. Lin, B. Lucini, M. Piai and D. Vadacchino

Confinement XV @ Stavanger, Norway
August 4, 2022

What's interesting about $\operatorname{Sp}(2 N)$ gauge theory?

- Like $S U\left(N_{c}\right)$ gauge theories (e.g. QCD), $S p(2 N)$ gauge theories have interesting (non)perturbative features, such as asymptotic freedom, confinement and chiral symmetry breaking.

- Supplement $S U\left(N_{c}\right)$ gauge theories by providing another sequence of N_{c} and support the large N_{c} equivalence in Yang-Mills theories.
- $S p(2 N)$ gauge group is pseudoreal.
- No sign problem in lattice simulations with finite chemical potential - provide new insights of QCD phase diagram
- Global (flavor) symmetry is enhanced and its breaking pattern is different to $S U\left(N_{c}\right)$ gauge theories.

$$
\begin{array}{cc}
\text { if } \mathcal{G} \equiv S U\left(N_{c}\right), N_{c}>2 & \text { if } \mathcal{G} \equiv S p(2 N) \\
S U\left(N_{f}\right) \times S U\left(N_{f}\right) \rightarrow S U\left(N_{f}\right) & S U\left(2 N_{f}\right) \rightarrow S p\left(2 N_{f}\right)
\end{array}
$$

- Finite temperature phase transition is first order for $S p(2 N)$ with $N>1$.

Holland, Pepe \& Wiese (2003)
Phenomenological applications for physics beyond SM based on novel strong dynamics: composite Higgs, partial top compositeness, composite dark matter (e.g. SIMP), gravitational waves, ...

- $S p(2 N)$ gauge group is pseudoreal.
- No sign problem in lattice simulations with finite chemical potential - provide new insights of QCD phase diagram
- Global (flavor) symmetry is enhanced and its breaking pattern is different to $S U\left(N_{c}\right)$ gauge theories.

$$
\begin{array}{cc}
\text { if } \mathcal{G} \equiv S U\left(N_{c}\right), N_{c}>2 & \text { if } \mathcal{G} \equiv S p(2 N) \\
S U\left(N_{f}\right) \times S U\left(N_{f}\right) \rightarrow S U\left(N_{f}\right) & S U\left(2 N_{f}\right) \rightarrow S p\left(2 N_{f}\right)
\end{array}
$$

- Finite temperature phase transition is first order for $S p(2 N)$ with $N>1$.

Holland, Pepe \& Wiese (2003)
Phenomenological applications for physics beyond SM based on novel strong dynamics: composite Higgs, top partial compositeness, composite dark matter (e.g. SIMP), gravitational waves, ...

- Composite Higgs

G. Cacciapaglia, plenary talk (Mon)

- Composite Higgs: PNGBs in the new strongly coupled gauge theories are identified by the Higgs doublets in SM.

Kaplan \& Georgi (1984)
Key idea: EW symmetry is not broken by new strong interaction, but by vacuum misalignment

Composite Higgs + top-quark partial compositeness

G. Cacciapaglia, plenary talk (Mon)

- Composite Higgs: PNGBs in the new strongly coupled gauge theories are identified by the Higgs doublets in SM. Kaplan \& Georgi (1984) Key idea: EW symmetry is not broken by new strong interaction, but by vacuum misalignment
- Partial compositeness: mixing between SM quarks and composite operators, formed by fermions in two different representations (chimera baryons), can explain quark mass hierarchy.

Kaplan (1991)
Key idea: large anomalous dim. of the chimera baryon, e.g. top-partner

- Modern composite Higgs models

Contino, Nomura \& Pomarol (2003);
Agashe, Contino \& Pomarol (2004)

- 4D UV models based on $S p(2 N)$ gauge theories
G. Ferretti \& T. Karataev (2013), arXiv:1312:5330;
J. Bernard, T. Gherghetta \& T. S. Ray (2013), arXiv: 1311.6562

4D UV models for comp. Higgs + partial compositeness

Coset	HC	ψ	χ	$-q_{\chi} / q_{\psi}$	Baryon	Name
$\mathrm{SU}(5) \times \mathrm{SU}(6)$	$\begin{aligned} & \mathrm{SO}(7) \\ & \mathrm{SO}(9) \end{aligned}$	$5 \times \mathbf{F}$	$6 \times \mathbf{S p}$	$\begin{gathered} 5 / 6 \\ 5 / 12 \end{gathered}$	$\psi \chi \chi$	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$
$\overline{\mathrm{SO}(5)} \times \overline{\mathrm{SO}(6)}$	$\begin{aligned} & \mathrm{SO}(7) \\ & \mathrm{SO}(9) \end{aligned}$	$5 \times \mathbf{S p}$	$6 \times \mathrm{F}$	$\begin{aligned} & 5 / 6 \\ & 5 / 3 \end{aligned}$	$\psi \psi \chi$	$\begin{aligned} & \text { M3 } \\ & \text { M4 } \end{aligned}$
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}$	$\mathrm{Sp}(4)$	$5 \times \mathbf{A}_{2}$	$6 \times \mathbf{F}$	5/3	$\psi \chi \chi$	M5
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(3)^{2}}{\mathrm{SU}(3)}$	$\begin{array}{\|l} \mathrm{SU}(4) \\ \mathrm{SO}(10) \end{array}$	$\begin{aligned} & 5 \times \mathbf{A}_{2} \\ & 5 \times \mathbf{F} \end{aligned}$	$\begin{aligned} & 3 \times(\mathbf{F}, \overline{\mathbf{F}}) \\ & 3 \times(\mathbf{S p}, \overline{\mathbf{S p}}) \end{aligned}$	$\begin{gathered} 5 / 3 \\ 5 / 12 \end{gathered}$	$\psi \chi \chi$	$\begin{aligned} & \text { M6 } \\ & \text { M7 } \end{aligned}$
$\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	$\begin{array}{\|l} \mathrm{Sp}(4) \\ \mathrm{SO}(11) \end{array}$	$\begin{aligned} & 4 \times \mathbf{F} \\ & 4 \times \mathbf{S p} \end{aligned}$	$\begin{aligned} & 6 \times \mathbf{A}_{2} \\ & 6 \times \mathbf{F} \end{aligned}$	$\begin{aligned} & 1 / 3 \\ & 8 / 3 \end{aligned}$	$\psi \psi \chi$	M8 M9
$\frac{\mathrm{SU}(4)^{2}}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	$\begin{aligned} & \mathrm{SO}(10) \\ & \mathrm{SU}(4) \end{aligned}$	$\begin{aligned} & 4 \times(\mathbf{S p}, \overline{\mathbf{S p}}) \\ & 4 \times(\mathbf{F}, \overline{\mathbf{F}}) \end{aligned}$	$\begin{aligned} & 6 \times \mathbf{F} \\ & 6 \times \mathbf{A}_{2} \end{aligned}$	$\begin{aligned} & 8 / 3 \\ & 2 / 3 \end{aligned}$	$\psi \psi \chi$	$\begin{aligned} & \text { M10 } \\ & \text { M11 } \end{aligned}$
$\frac{\mathrm{SU}(4)^{2}}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(3)^{2}}{\mathrm{SU}(3)}$	$\mathrm{SU}(5)$	$4 \times(\mathbf{F}, \overline{\mathbf{F}})$	$3 \times\left(\mathbf{A}_{2}, \overline{\mathbf{A}_{2}}\right)$	4/9	$\psi \psi \chi$	M12

- M8: most lattice-friendly, e.g. exact \# of matter content

$$
\begin{gathered}
S U(4) / S p(4) \\
\# \text { of } \mathrm{pNGBs}=5
\end{gathered}
$$

4 of 5 PNGBs: Higgs doublets

$$
\begin{aligned}
& S U(2)_{L} \times U(1)_{Y} \subset S p(4) \\
& \quad \text { SM EW } \\
& S U(3)_{C} \times U(1)_{Y} \subset S O(6) \\
& \text { SM Strong }
\end{aligned}
$$

Chimera baryon (top partner)

$$
\hat{\Psi}^{a \alpha b} \equiv\left(\psi^{a} \chi^{\alpha} \psi^{b}\right)
$$

carry color charge
G. Cacciapaglia, G. Ferretti, T. Flacke \& H. Serodio (2019), arXiv:1902.06890.

Theory space of $S p(4)$ gauge group + fermion matter

B. Kim, D. Hong \& JWL (2020), arXiv:2001.02690

Dashed lines: analytical estimates of the lower end of conformal window

Black: Schwinger-Dyson Red: All-order beta func. Green: 2-loop beta func. Blue: BZ conformal exp.

Theory space of $S p(4)$ gauge group + fermion matter

E. Bennett et al, arXiv:1712.04220;
N_{f} (Fundamental) (2017, 2019) arXiv:1912.06505.
■ Glueballs \& quenched meson spectrum

Theory space of $S p(4)$ gauge group + fermion matter

Theory space of $S p(4)$ gauge group + fermion matter

E. Bennett et al (2022), work in progress

『 Meson spectrum in $\mathrm{n}_{\mathrm{f}}=3$ dynamical simulations
E. Bennett et al, arXiv:1712.04220; (2017, 2019) arXiv:1912.06505.

■ Glueballs \& quenched meson spectrum
E. Bennett et al (2019), arXiv:1909.12662

- Meson spectrum in $\mathrm{N}_{\mathrm{f}}=2$ dynamical simulations

Lattice setup

- Lattice formulation with the standard Wilson gauge \& fermion actions

$$
\mathcal{G} \equiv S p(2 N) \quad \mathcal{G} \equiv S p(4), N_{f}=2(\mathrm{~F}), n_{f}=3(\mathrm{AS})
$$

pure gauge theories
theories with dynamical fermions

- (bare) lattice parameters: $\beta=4 N / g^{2}, m_{0}^{f} \& m_{0}^{a s}$
- Simulations by employing Heat-bath algorithm for pure gauge theories and the (rational) hybrid Monte Carlo ((R)HMC) for the theories with dynamical fermions.
- Scale setting: Gradient flow method

$$
\hat{a} \equiv a / w_{0} \quad \hat{m} \equiv m^{\text {lat }} w_{0}^{\text {lat }}=m w_{0}
$$

What did we learn about $S p(2 N)$ gauge theory so far?

Universalities in Yang-Mills: $S U\left(N_{c}\right), S O\left(N_{c}\right) \& S p(2 N)$

\square Casimir scaling $\frac{m_{0^{++}}^{2}}{\sigma}=\Pi \overbrace{C_{2}}^{C_{2}(F)}$

$$
\frac{C_{2}(A)}{C_{2}(F)}= \begin{cases}\frac{2 N^{2}}{N^{2}-1} & \text { for } \operatorname{SU}(N) \\ \frac{2(N-2)}{N-1} & \text { for } \operatorname{SO}(N) \\ \frac{4(N+1)}{2 N+1} & \text { for } \operatorname{Sp}(2 N)\end{cases}
$$

$$
\eta\left(0^{++}\right) \equiv \frac{m_{0^{++}}^{2}}{\sigma} \cdot \frac{C_{2}(F)}{C_{2}(A)}= \begin{cases}5.41(12), & (d=3+1) \\ 8.440(14)(76), & (d=2+1)\end{cases}
$$

D. Hong, JWL, B. Lucini, M. Piai \& D. Vadacchino (2017)

Universalities in Yang-Mills: $S U\left(N_{c}\right), S O\left(N_{c}\right) \& S p(2 N)$

\square Casimir scaling $\frac{m_{0^{++}}^{2}}{\sigma}=\eta \overbrace{C_{2}(A)}^{C_{2}(F)}$

$$
\frac{C_{2}(A)}{C_{2}(F)}= \begin{cases}\frac{2 N^{2}}{N^{2}-1} & \text { for } \operatorname{SU}(N) \\ \frac{2(N-2)}{N-1} & \text { for } \operatorname{SO}(N) \\ \frac{4(N+1)}{2 N+1} & \text { for } \operatorname{Sp}(2 N)\end{cases}
$$

$$
\eta\left(0^{++}\right) \equiv \frac{m_{0^{++}}^{2}}{\sigma} \cdot \frac{C_{2}(F)}{C_{2}(A)}= \begin{cases}5.41(12), & (d=3+1), \\ 8.440(14)(76), & (d=2+1) .\end{cases}
$$

D. Hong, JWL, B. Lucini, M. Piai \& D. Vadacchino (2017)
E. Bennett et al (2021), arXiv:2010.15781

The value of the universal constant updated by combining the results from lattice calculations of $S p$ (2), $S p$ (4), $S p$ (6) and $S p$ (8) YMs.

Universalities in Yang-Mills: $S U\left(N_{c}\right), S O\left(N_{c}\right) \& S p(2 N)$

■ Mass ratio of gluebells $R=\frac{m_{2^{++}}}{m_{0^{++}}}$
A. Athenodorou et al (2016), arXiv:1605.04258

Lattice results of $S U(N), S O(N)$ $\& S p(2 N)$ YMs at finite N and analytical results from gaugegravity dualities and alternative field methods support the conjecture of the universal mass ratio R.
E. Bennett et al (2020), arXiv:2004.11063

Topological susceptibility in Yang-Mills: $S U\left(N_{c}\right) \& S p(2 N)$

$$
\chi \equiv \int \mathrm{d}^{4} x\langle q(x) q(0)\rangle
$$

$$
q(x) \equiv \frac{1}{32 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \operatorname{Tr} F_{\mu \nu}(x) F_{\rho \sigma}(x)
$$

$$
\eta_{\chi} \equiv \frac{\chi C_{2}(F)^{2}}{\sigma^{2} d_{G}}=\frac{\chi}{\sigma^{2}} \cdot \begin{cases}\frac{N_{c}^{2}-1}{4 N_{c}^{2}} & \text { for } S U\left(N_{c}\right) \\ \frac{N_{c}+1}{8 N_{c}} & \text { for } S p\left(N_{c}\right)\end{cases}
$$

Numerical results: Global symmetry breaking

- Symmetry breaking patterns are encoded in the Dirac spectrum

chRMT prediction: $\quad P(s)=N_{\bar{\beta}} s^{\bar{\beta}} e^{-c_{\bar{\beta}} s^{2}}$,

$$
\text { with } N_{\bar{\beta}}=2 \frac{\Gamma^{\bar{\beta}+1}\left(\frac{\bar{\beta}}{2}+1\right)}{\Gamma^{\bar{\beta}+2}\left(\frac{\bar{\beta}+1}{2}\right)}, c_{\bar{\beta}}=\frac{\Gamma^{2}\left(\frac{\bar{\beta}}{2}+1\right)}{\Gamma^{2}\left(\frac{\bar{\beta}+1}{2}\right)}
$$

- Fermions in the F and AS representations are correctly implemented. E. Bennett el al (2022), arXiv: 2202.05516

Numerical results: Global symmetry breaking

- Key requirement for composite Higgs: spontaneous symmetry breaking

Pseudo Nambu Goldstone Bosons (pNGBs)

$$
\begin{gathered}
S U(4) / S p(4) \\
\text { \# of pNGBs }=5
\end{gathered}
$$

$N_{f}=2(F) S p(4)$
E. Bennett el al (2019), arXiv:1909.12662

Numerical results: Vector meson

- Lattice results of various gauge theories coupled to $\mathrm{N}_{\mathrm{f}}=2$ fund. Dirac flavors
- The hypothesis vector meson dominance leads to the KSRF relation

Kowarabayashi \& Suzuki (1966)

Riazuddin \& Fayyazuddin (1966)

$$
g_{V P P}=\frac{m_{\mathrm{V}}}{\sqrt{2} f_{\mathrm{PS}}}
$$

HLS EFT fit results: in the massless limit

$$
g_{\mathrm{VPP}}^{\chi}=6.0(4)(2)
$$

Large N argument:

$$
f_{\mathrm{PS}} \sim \sqrt{N_{c}}
$$

$m_{\mathrm{V}} / \sqrt{2} f_{\mathrm{PS}} \times \sqrt{N_{c} / 3} \sim 6$

Vector mesons in strongly coupled gauge theories

Nogradi \& Szikszai, arXiv:1912.04114

- $m_{\mathrm{V}} / f_{\mathrm{PS}}$ depends on N and the fermion representation, but not the \# of flavors

Numerical result: Chimera baryon

- $(\mathrm{J}, \mathrm{I})=(1 / 2,5)$ chimera baryon (top partner) is not the lightest state, but still stable since $m_{\Lambda}-m_{\Sigma} \ll m_{\mathrm{PS}}^{(f)}$.

Numerical result: Chimera baryon

- $(\mathrm{J}, \mathrm{I})=(1 / 2,5)$ chimera baryon (top partner) is not the lightest state, but still stable since $m_{\Lambda}-m_{\Sigma} \ll m_{\mathrm{PS}}^{(f)}$.
- $(\mathrm{J}, \mathrm{I})=(1 / 2,5)$ chimera baryon (top partner) becomes the lightest state when $m_{\mathrm{PS}}^{(a s)}$ is about 4 times larger than $m_{\mathrm{PS}}^{(f)}$.

Numerical result: mass spectrum of the model M8

- Premature to discuss any physics, yet : single lattice, large mass, ...

Concluding remarks

Sp $(2 N)$ gauge theories

 with/without fermions on the lattice

- Theoretical point of view: new insights of composite dynamics, such as large N universalities in Yang-Mills and (near-)conformal phase in theories with large numbers of fermion.
- Phenomenological point of view: Due to a nonperturbative nature of novel strong dynamics in search for physics beyond SM, numerical lattice calculations can play a crucial role by providing various phenomenological inputs, such as mass, form factor, low-energy constants, etc.

On going work

(1) $S p$ (4) gauge theory with $n_{f}=3$ (dynamical) anti-sym. Dirac fermions
(1) $S p(4), S p(6), S p(8)$ gauge theory with quenched fund., anti-sym. \& sym. Dirac fermions

(1) Meson spectra of $S p(4)$ with $N_{f}=2$ fund. \& $n_{f}=3$ anti-sym. dynamical Dirac fermions

- Spectrum of chimera baryon (top partner)

Future work (long term)

* Model M8 is broken or (nearly) conformal?
\% If it is (nearly) conformal, how large is the anomalous dimension?
- Phase structure of $S p(2 N)$ gauge theories at finite temperature and/or density

Thank you for your attention!

Backup slides

Lattice $S p(2 N)$ gauge theories

- Lattice formulation with the standard Wilson gauge \& fermion actions

$$
S=\beta \sum_{x} \sum_{\mu<\nu}\left(1-\frac{1}{4} \operatorname{Re} \operatorname{Tr} U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)\right)
$$

$$
\begin{gathered}
+a^{4} \sum_{x} \bar{Q}_{j}(x) D^{F} Q_{j}(x)+a^{4} \sum_{x} \bar{\Psi}_{k}(x) D^{A S} \Psi_{k}(x) \\
\text { antisymmetric (AS }
\end{gathered}
$$ fundamental (F) antisymmetric (AS)

with $\beta=4 N / g^{2}$

$$
\begin{aligned}
& D^{F} Q_{j}(x) \equiv\left(4 / a+m_{0}^{f}\right) Q_{j}(x)-\frac{1}{2 a} \sum_{\mu}\left\{\left(1-\gamma_{\mu}\right) U_{\mu}^{F}(x) Q_{j}(x+\hat{\mu})+\left(1+\gamma_{\mu}\right) U_{\mu}^{F}(x-\hat{\mu}) Q_{j}(x-\hat{\mu})\right\} \\
& D^{A S} \Psi_{k}(x) \equiv\left(4 / a+m_{0}^{a s}\right) \Psi_{k}(x)-\frac{1}{2 a} \sum_{\mu}\left\{\left(1-\gamma_{\mu}\right) U_{\mu}^{A S}(x) \Psi_{k}(x+\hat{\mu})+\left(1+\gamma_{\mu}\right) U_{\mu}^{A S}(x-\hat{\mu}) \Psi_{k}(x-\hat{\mu})\right\}
\end{aligned}
$$

where $U_{\mu}(x)=U_{\mu}^{F}(x) \in S p(4)$ and

$$
\left(U_{\mu}^{A S}\right)_{(a b)(c d)}(x) \equiv \operatorname{Tr}\left[\left(e_{A S}^{(a b)}\right)^{\dagger} U_{\mu}(x) e_{A S}^{(c d)} U_{\mu}^{\mathrm{T}}(x)\right], \quad \text { with } a<b, c<d
$$

Determination of the lattice parameters

- $\operatorname{Sp}(4)$ theory with fermions: Weak and strong coupling regimes are separated by 1st order phase transition.

$$
\begin{array}{rl}
N_{f}=2 F S p(4): & \beta \gtrsim 6.8 \\
n_{f}=3 & A S S p(4): \\
N_{f}=2 \& 6.5 \\
n_{f}=3 A S S p(4): & \beta \gtrsim 6.3
\end{array}
$$

- Finite volume corrections are statistically negligible if $m_{\mathrm{PS}} L \gtrsim 7.5$.
E. Bennett et al (2022), arXiv:2202.05516

- Observables I: Glueballs \& string tension in pure $S p(2 N)$

- Gauge invariant gluonic operators
- String tension

$$
\begin{aligned}
\Phi(\vec{x}) & \equiv \operatorname{Tr}\left(\mathrm{P} e^{i g \oint_{\mathcal{C}} A_{0}(t, \vec{x}) \mathrm{d} t}\right) \\
\left\langle\Phi^{\dagger}(0) \Phi(z)\right\rangle & =\sum_{n} c_{n}^{l} e^{-m_{n}^{l} z} \quad \sigma=\lim _{\tau \rightarrow \infty} \frac{m_{0}^{l}}{\tau}
\end{aligned}
$$

- Glueballs

$$
\begin{aligned}
\mathcal{O}_{\mathcal{C}}(t, \vec{x}) & \equiv \operatorname{Tr}\left(\prod_{\mathcal{C}} \mathrm{U}_{\mathrm{I}}\right) \\
\left\langle O^{\dagger}(0) O(t)\right\rangle & =\sum_{n}\left|c_{J^{P}, n}\right|^{2} e^{-m_{J^{P}, n} t}
\end{aligned}
$$

Irreducible reps. of the octahedral group

$$
R=A_{1}, A_{2}, E, T_{1}, T_{2}
$$

Subdued reps. of continuum rotational group 4

J	A_{1}	A_{2}	E	T_{1}	T_{2}
0	1	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	1	0	1	1
4	1	0	1	1	1

Observables II: spin-0 \& 1 mesons in $S p(4)$

- Global symmetry breaking: $S U(4) / S p(4) \times S U(6) / S O(6)$
- Gauge invariant, flavor non-singlet, i.e. $i \neq j$ or $k \neq m$

Label M	Interpolating operator	Meson	J^{P}	$S p(4)$	$S O(6)$
in QCD					
PS	$\overline{\mathcal{O}_{M}}$	π	0^{-}	$5(+1)$	1
S	$\overline{Q^{i}} \gamma_{5} Q^{j}$	a_{0}	0^{+}	$5(+1)$	1
V	$\overline{Q^{i}} Q^{j}$	ρ	1^{-}	10	1
T	$\overline{Q^{i}} \gamma_{0} \gamma_{\mu} Q^{j}$	ρ	1^{-}	$10(+5+1)$	1
AV	$\overline{Q^{i}} \gamma_{5} \gamma_{\mu} Q^{j}$	a_{1}	1^{+}	$5(+1)$	1
AT	$\overline{Q^{i}} \gamma_{5} \gamma_{0} \gamma_{\mu} Q^{j}$	b_{1}	1^{+}	$10(+5+1)$	1
ps	$\overline{\Psi^{k}} \gamma_{5} \Psi^{m}$	π	0^{-}	1	$20^{\prime}(+1)$
s	$\overline{\Psi^{k}} \Psi^{m}$	a_{0}	0^{+}	1	$20^{\prime}(+1)$
v	$\overline{\Psi^{k}} \gamma_{\mu} \Psi^{m}$	ρ	1^{-}	1	15
t	$\overline{\Psi^{k}} \gamma_{0} \gamma_{\mu} \Psi^{m}$	ρ	1^{-}	1	$15\left(+20^{\prime}+1\right)$
av	$\overline{\Psi^{k}} \gamma_{5} \gamma_{\mu} \Psi^{m}$	a_{1}	1^{+}	1	$20^{\prime}(+1)$
at	$\overline{\Psi^{k}} \gamma_{5} \gamma_{0} \gamma_{\mu} \Psi^{m}$	b_{1}	1^{+}	1	$15\left(+20^{\prime}+1\right)$

Observables III: Chimera baryon in $S p$ (4)

- Recall the global symmetry and its spontaneous breaking

$$
S U(4) / S p(4) \otimes S U(6) / S O(6)
$$

where $S O(4)$ subgroup of $S p(4) \sim S U(2)_{L}$ gauge group in SM \& $S U(3)$ subgroup of $S O(6) \sim S U(3)_{c}$ gauge group in SM

- Then, the top partner can be sourced by the operators (similar to $\boldsymbol{\Lambda}$ baryon in QCD)

$$
\begin{aligned}
& \mathcal{O}_{\mathrm{CB}, 1}^{L, R}=\left(\overline{Q^{1 a}} \gamma^{5} Q^{2 b}+\overline{Q^{2 a}} \gamma^{5} Q^{1 b}\right) \Omega_{b c} P_{L, R} \Psi^{k c a}, \\
& \mathcal{O}_{\mathrm{CB}, 2}^{L, R}=i\left(-\overline{Q^{1 a}} \gamma^{5} Q^{2 b}+\overline{Q^{2 a}} \gamma^{5} Q^{1 b}\right) \Omega_{b c} P_{L, R} \Psi^{k c a}, \\
& \mathcal{O}_{\mathrm{CB}, 3}^{L, R}=\left(\overline{Q^{1 a}} \gamma^{5} Q^{1 b}-\overline{Q^{2 a}} \gamma^{5} Q^{2 b}\right) \Omega_{b c} P_{L, R} \Psi^{k c a}, \\
& \mathcal{O}_{\mathrm{CB}, 4}^{L, R}=-i\left(\overline{Q^{1 a}} Q_{C}^{2 b}+\overline{Q_{C}^{2 a}} Q^{1 b}\right) \Omega_{b c} P_{L, R} \Psi^{k c a}, \\
& \mathcal{O}_{\mathrm{CB}, 5}^{L, R}=i\left(-i \overline{Q^{1 a}} Q_{C}^{2 b}+i \overline{Q_{C}^{2 a}} Q^{1 b}\right) \Omega_{b c} P_{L, R} \Psi^{k c a}
\end{aligned}
$$

E. Bennett et al (2022), arXiv:2202.05516
where 4 of these operators transform 3 of $S U(3)_{c}$ and 4 of $S O(4)$.

- We also consider the parity projections in the nonrelativistic limit.

$$
\mathcal{O}_{\mathrm{CB}}^{ \pm}(x)=P_{ \pm} \mathcal{O}_{\mathrm{CB}}(x) \text { with } P_{ \pm}=\frac{1}{2}\left(\mathbb{1} \pm \gamma_{0}\right)
$$

- Observables III: Chimera baryon in $S p(4)$

- More chimera baryons with different spin and/or irreps. of fundamental flavors

$$
\begin{aligned}
\mathcal{O}_{\mathrm{CB}, 6} & =-\frac{i}{2}\left(\overline{Q^{1 a}} \gamma^{\mu} \gamma^{5} Q_{C}^{1 b}+\overline{Q^{2 a}} \gamma^{\mu} \gamma^{5} Q_{C}^{2 b}-\overline{Q_{C}^{1 a}} \gamma^{\mu} \gamma^{5} Q^{1 b}-\overline{Q_{C}^{2 a}} \gamma^{\mu} \gamma^{5} Q^{2 b}\right) \Omega_{b c} \Psi^{k c a}, \\
\mathcal{O}_{\mathrm{CB}, 9} & =-\frac{i}{2}\left(\overline{Q^{1 a}} \gamma^{\mu} \gamma^{5} Q_{C}^{1 b}-\overline{Q^{2 a}} \gamma^{\mu} \gamma^{5} Q_{C}^{2 b}-\overline{Q_{C}^{1 a}} \gamma^{\mu} \gamma^{5} Q^{1 b}+\overline{Q_{C}^{2 a}} \gamma^{\mu} \gamma^{5} Q^{2 b}\right) \Omega_{b c} \Psi^{k c a}, \\
\mathcal{O}_{\mathrm{CB}, 10} & =\frac{\sqrt{2}}{2}\left(\overline{Q^{1 a}} \gamma^{\mu} \gamma^{5} Q_{C}^{1 b}+\overline{Q_{C}^{1 a}} \gamma^{\mu} \gamma^{5} Q^{1 b}\right) \Omega_{b c} \Psi^{k c a}, \\
\mathcal{O}_{\mathrm{CB}, 12} & =\frac{\sqrt{2}}{2}\left(\overline{Q^{2 a}} \gamma^{\mu} \gamma^{5} Q_{C}^{2 b}+\overline{Q_{C}^{2 a}} \gamma^{\mu} \gamma^{5} Q^{2 b}\right) \Omega_{b c} \Psi^{k c a} .
\end{aligned}
$$

- Spin projections in the non relativistic limit

$$
\begin{array}{ll}
P_{i j}^{3 / 2}=\delta_{i j}-\frac{1}{3} \gamma_{i} \gamma_{j}, \\
P_{i j}^{1 / 2} & =\frac{1}{3} \gamma_{i} \gamma_{j} .
\end{array} \quad \Sigma \quad \Sigma^{*}\left(\frac{3}{2}, 10\right)
$$

