Density of states for gravitational waves

Felix Springer David Schaich

University of Liverpool The XVth Quark confinement and the Hadron spectrum conference

August 2, 2022

Outline

- Underlying physics and motivation: Composite Dark Matter
- Numerical tool: LLR
 - LLR explained
 - Review U(1) case
 - Bulk phase transitions SU(N)
 - Confinement phase Transition SU(4)

Composite Dark Matter

Broad class of composite Dark Matter models

- Dark mesons
- Dark glueballs
- Dark baryons

Composite Dark Matter

Broad class of composite Dark Matter models

- "Stealth dark matter confinement transition and gravitational waves", LSD Collaboration, arXiv:2006.16429
- "Testing the Dark Confined Landscape:From Lattice to Gravitational Waves", Huang et al., arXiv:2012.11614
- "Dark Confinement-Deconfinement Phase Transition:A Roadmap from Polyakov Loop Models to Gravitational Waves", Kang et al., arXiv:2101.03795
- "Review of strongly-coupled composite dark matter models and lattice simulations", Kribs and Neil, arXiv:1604.04627

New strongly coupled SU(N) gauge sector coupled to new massive fermions

- New strongly coupled SU(N) gauge sector coupled to new massive fermions
- Dark Matter candidate: composite 'dark baryon' DM

- New strongly coupled SU(N) gauge sector coupled to new massive fermions
- Dark Matter candidate: composite 'dark baryon' DM
- Early-universe SU(N) confinement transition

- New strongly coupled SU(N) gauge sector coupled to new massive fermions
- Dark Matter candidate: composite 'dark baryon' DM
- ► Early-universe SU(N) confinement transition If confinement transition is first order → stochastic background of gravitational waves

Stealth Dark Matter

Stealth Dark Matter

 SU(4) gauge theory coupled to four flavors of moderately heavy fermions in the fundamental representation

Stealth Dark Matter

- SU(4) gauge theory coupled to four flavors of moderately heavy fermions in the fundamental representation
- Pure gauge SU(4) theory recovered in the 'quenched' case, fermions infinitely massive

- Confinement \rightarrow lattice simulation
- $SU(4) \rightarrow$ first order phase transition

• Confinement \rightarrow lattice simulation

- $SU(4) \rightarrow$ first order phase transition
 - Poor performance of standard Monte Carlo techniques

• Confinement \rightarrow lattice simulation

- $SU(4) \rightarrow$ first order phase transition
 - Poor performance of standard Monte Carlo techniques

Solution:

Wang-Landau type algorithms

Standard Technique:

$$\langle \mathcal{O}
angle = rac{1}{Z(eta)} \int \mathrm{d}\phi \mathcal{O}[\phi] e^{eta S[\phi]}$$

approximate by

$$\langle \mathcal{O}
angle = rac{1}{N} \sum_{\mathcal{C}} \mathcal{O}[\mathcal{C}]$$

High dimensional integral:

$$Z(eta) = \int \mathcal{D} \phi e^{eta \mathcal{S}[\phi]}$$

High dimensional integral:

$$Z(eta) = \int \mathcal{D}\phi e^{eta S[\phi]}$$

Density of states:

$$\rho(E) = \int \mathcal{D}\phi \delta(S[\phi] - E)$$

High dimensional integral:

$$Z(eta) = \int \mathcal{D}\phi e^{eta \mathcal{S}[\phi]}$$

Density of states:

$$\rho(E) = \int \mathcal{D}\phi \delta(S[\phi] - E)$$

1 dimensional integral:

$$Z(eta) = \int \mathrm{d} E
ho(E) e^{eta E}$$

High dimensional integral:

$$Z(eta) = \int \mathcal{D}\phi e^{eta S[\phi]}$$

Density of states:

$$\rho(E) = \int \mathcal{D}\phi \delta(S[\phi] - E)$$

1 dimensional integral:

$$Z(\beta) = \int \mathrm{d}E\rho(E)e^{\beta E}$$

Calculate observable:

$$\langle \mathcal{O} \rangle = \frac{1}{Z(\beta)} \int \mathrm{d}E \mathcal{O}\rho(E) e^{\beta E}$$

Task:

Calculate $\rho(E)$ with near constant relative error over a wide range of E

Task:

Calculate $\rho(E)$ with near constant relative error over a wide range of E

Solution:

Linear Logarithmic Relaxation

Re-weighted Expectation Value

Re-weighted expectation value ΔE

$$\begin{split} \langle \langle E - E_0 \rangle \rangle_{\delta}(a) &= \frac{1}{N} \int \mathcal{D}\phi \theta_{E_0,\delta}(E - E_0) e^{-aS} \\ &= \frac{1}{N} \int_{E_0 - \frac{\delta}{2}}^{E_0 + \frac{\delta}{2}} \mathrm{d}E(E - E_0) \rho(E) e^{-aE} \\ &= \Delta E \end{split}$$

Normalization factor

$$N = \int \mathcal{D}\phi \theta_{E_0,\delta} e^{-aS[\phi]}$$

$$\Delta E(a) = \frac{1}{N} \int_{E_0 - \frac{\delta}{2}}^{E_0 + \frac{\delta}{2}} \mathrm{d}E(E - E_0)\rho(E)e^{-aE} = 0$$

$$\Delta E(a) = \frac{1}{N} \int_{E_0 - \frac{\delta}{2}}^{E_0 + \frac{\delta}{2}} \mathrm{d}E(E - E_0)\rho(E)e^{-aE} = 0$$

Approximate integral with trapezium rule

$$\Delta E(a) = \frac{1}{N} \int_{E_0 - \frac{\delta}{2}}^{E_0 + \frac{\delta}{2}} \mathrm{d}E(E - E_0)\rho(E)e^{-aE} = 0$$

Approximate integral with trapezium rule

```
Let interval go to zero \delta \rightarrow \mathbf{0}
```

$$\Delta E(a) = \frac{1}{N} \int_{E_0 - \frac{\delta}{2}}^{E_0 + \frac{\delta}{2}} \mathrm{d}E(E - E_0)\rho(E)e^{-aE} = 0$$

Approximate integral with trapezium rule

Let interval go to zero $\delta \rightarrow 0$

Solve for a

$$a_0 = \frac{1}{\rho(E_0)} \frac{\mathrm{d}\rho(E)}{\mathrm{d}E} \Big|_{E=E_0} = \frac{\mathrm{d}\ln(\rho(E))}{\mathrm{d}E} \Big|_{E=E_0}$$

numerically integrate a and we get ρ with constant relative error!

Integrate the exponent using the Trapezium rule

$$\rho(E_N) = e^{\int_{-\infty}^{E_N} \mathrm{d}E' a(E')}$$
$$= \rho_c e^{a_0 \frac{\delta_E}{2} + \sum_{k=1}^{N-1} a_k \delta + a_N \delta + \mathcal{O}(\delta^2)}$$

Integrate the exponent using the Trapezium rule

$$\rho(E_N) = e^{\int_{-\infty}^{E_N} dE' a(E')}$$
$$= \rho_c e^{a_0 \frac{\delta_E}{2} + \sum_{k=1}^{N-1} a_k \delta + a_N \delta + \mathcal{O}(\delta^2)}$$

Get $\rho(E)$ up to a constant with exponential error suppression

$$\rho(E_N) = \rho_c \tilde{\rho}(E_N) e^{\mathcal{O}(\delta^2)}$$

$$a^{(n+1)} = a^{(n)} + \frac{12}{\delta^2(n+1)} \Delta E(a^{(n)})$$

$$a^{(n+1)} = a^{(n)} + rac{12}{\delta^2(n+1)} \Delta E(a^{(n)})$$

Evaluate $\Delta E(a^{(n)})$ with standard Monte Carlo

$$egin{aligned} \Delta E(a^{(n)}) &= \langle \langle E - E_0
angle
angle_{\delta}(a^{(n)}) \ &= rac{1}{N} \int \mathcal{D} \phi heta_{E_0,\delta}(E - E_0) e^{-a^{(n)}S} \end{aligned}$$

$$a^{(n+1)} = a^{(n)} + rac{12}{\delta^2(n+1)} \Delta E(a^{(n)})$$

Evaluate $\Delta E(a^{(n)})$ with standard Monte Carlo

$$\Delta E(a^{(n)}) = \langle \langle E - E_0 \rangle \rangle_{\delta}(a^{(n)})$$
$$= \frac{1}{N} \int \mathcal{D}\phi \theta_{E_0,\delta}(E - E_0) e^{-a^{(n)}S}$$

New Boltzmann weight!

$$a^{(n+1)} = a^{(n)} + rac{12}{\delta^2(n+1)} \Delta E(a^{(n)})$$

Evaluate $\Delta E(a^{(n)})$ with standard Monte Carlo

$$\Delta E(a^{(n)}) = \langle \langle E - E_0 \rangle \rangle_{\delta}(a^{(n)})$$
$$= \frac{1}{N} \int \mathcal{D}\phi \theta_{E_0,\delta}(E - E_0) e^{-a^{(n)}S}$$

New Boltzmann weight!

Alternatively:
$$\Delta E(a^{(n)}) = \frac{1}{N} \int \mathcal{D}\phi(E - E_0) e^{-a^{(n)}S - \frac{(S - E_0)}{2\delta^2}}$$

Pseudocode

loop over energy interval $[E_i \pm \frac{\delta}{2}]$

loop over Robbins-Monro iteration

loop over Monte Carlo sweeps through the lattice Evaluate $\Delta E_i(a_i^{(n)})$ using standard Monte Carlo New Boltzmann weight and restricted energy interval! End loop

Calculate new
$$a_i^{(n+1)}$$

 $a_i^{(n+1)} = a_i^{(n)} + \frac{12}{\delta^2(n+1)} \Delta E_i(a_i^{(n)})$
End loop

End loop

Compact U(1) Lattice Gauge Theory

U(1) Density of States

U(1) Density of States

U(1) Density of States

SU(N) Bulk Phase Transition

SU(N) Bulk Phase Transition

SU(6) Density of States

SU(4) Thermal Phase Transition

SU(4) Thermal Phase Transition

Synthetic Data

Synthetic Data

Recap

- Broad class of Composite Dark Matter models
- Gravitational waves offer new way to probe these models
- \blacktriangleright First order phase transition difficult with MCMC \rightarrow LLR
- ▶ LLR works for strong bulk phase transitions (U(1), SU(N))
- Weaker confinement Transition not yet resolved
 - Improve statistics
 - Go to bigger lattice sizes and increase aspect ratios
 - Decrease $\delta = 0.001/V \rightarrow \delta = 0.0001/V$
 - Go to SU(N) with $N \ge 6$