Reducing the Sign Problem using Line Integrals

Rasmus Larsen [rasmus.n.larsen@uis.no][arxiv:2205.02257]

Introduction

We wish to solve complex valued integrals of the form

$$
\langle O\rangle=\int d^{N} x \exp (-E(x)) O(x) /\langle 1\rangle, \quad E \in \mathbb{C}(1)
$$

- Attempted solution: Sample lines instead of points, such that oscillations will cancel
- Line found by following the direction in which the imaginary part of the action $\operatorname{Im}(E) \equiv E_{i m}$ changes

Line is found by following the following differential equation

$$
\begin{aligned}
\frac{\partial E_{i m}(x)}{\partial x_{j}} & \equiv F_{j}(x) \\
F_{j}(x) & =\frac{d x_{j}}{d \tau}
\end{aligned}
$$

- Example:

$$
E=i\left(x_{1}^{2}+x_{2}^{2}\right) \quad \text { Plot of } F_{j}=2 x_{j}
$$

Relative Volume

- Example: $E=i\left(x_{1}^{2}+x_{2}^{2}\right)$

We start with 2 slightly different starting points $x(\tau=0)$ and $y(\tau=0)$. At later time $\tau=1$ the points are further separated. Due to the change in the separation between 2 infinitesimally close points, we need to count contributions to the line integral as $V_{\text {rel }}=\left|\frac{x(1)}{x(0)}\right|$, in order to count every point in the integral equally.

- In general the relative change to the volume can be found as: $\frac{d \log \left(V_{r e l}(\tau)\right)}{d \tau}=\sum_{j} \frac{\partial^{2} E_{i m}(x(\tau))}{\partial^{2} x_{j}}$

Sketch of example: The lines are created by starting at time $\tau=0$. At time $\tau=1$ the positions in the 2 lines are further away from each other.

Implementation

Line integral I_{O} implemented as a set of ordinary differential equations from initial position x_{0}

$$
\begin{aligned}
F_{j}(x)= & \frac{\partial E_{i m}}{\partial x_{j}}=\frac{d x_{j}}{d \tau} \\
\frac{d s}{d \tau}= & \sqrt{\sum_{j} F_{j}(x)^{2}} \\
\frac{d J}{d \tau}= & \sum_{j} \frac{\partial^{2} E_{i m}}{\partial^{2} x_{j}} \\
\frac{d I_{O}}{d \tau}= & O(x(\tau))\left|F\left(x_{0}\right)\right| \times \\
& e^{-E(x(\tau))-g(s)+J}
\end{aligned}
$$

- $J=\log \left(V_{\text {rel }}(\tau)\right)$
- $\left|F\left(x_{0}\right)\right|$ can be absorbed into the initial conditions of J
- Arbitrary function $g(s)$ included. We will use $g(s)=(s / \sigma)^{2}$

Example: 1d real time anharmonic oscillator

- As an example of the line integrals usage, we calculate the correlator $\langle x(0) x(t)\rangle$ for a real time 1d anharmonic oscillator, and compare with the solution from discretizing x

$$
\begin{align*}
\langle O\rangle=\langle x(0) x(t)\rangle & =\operatorname{Tr}\left(e^{-\beta H} x e^{-i t H} x e^{i t H}\right) / \operatorname{Tr}\left(e^{-\beta H}\right) \tag{2}\\
H & =\frac{p^{2}}{2}+\frac{x^{2}}{2}+\frac{\lambda x^{4}}{4!} \tag{3}
\end{align*}
$$

- We will look at the strongly coupled case $\lambda=24, \beta=1.0, \sigma=1.0$
- We sample with the metropolis algorithm using $\left|I_{1}\left(x_{j}\right)\right|$:
$\langle O\rangle=\frac{\sum_{j} I_{O}\left(x_{j}\right) /\left|I_{1}\left(x_{j}\right)\right|}{\sum_{j} I_{1}\left(x_{j}\right) /\left|I_{1}\left(x_{j}\right)\right|}, \quad I_{O}=I_{O}(\tau=\infty)-I_{O}(\tau=-\infty)$

Conclusion

- Changed sampling from points to lines
- Written down the line integrals as a set of differential equations
- Reduced the sign problem for a 1d real time anharmonic oscillator
- Sign problem grows too much for large times, $|\langle 1\rangle|$ becomes too small

