Global Symmetries as a Signature of Partial Confinement

Masanori Hanada, JH, Matthew Knaggs, Andy O'Bannon [2112.11398]

Vaibhav Gautam, Masanori Hanada, JH, Enrico Rinaldi [22XX.XXXX]

Jack Holden 5th August 2022

source: Hanada, Shimada, Wintergerst 2001.10459

Hanada, Maltz 1608.03276 Berenstein 1806.05729

Global symmetry breaking?

Global symmetry breaking?Precise definition

Global symmetry breaking?

- Precise definition
- Physical consequences

Testing the conjecture

Testing the conjecture 2. Check symmetries at transition

Test 1: U(N) pure YM large N, strong coupling

U(N) YM

CentreChiral✓××✓

U(N) YM

CentreChiral✓××✓×✓?×??×?

U(N) YM 1. Find connecting saddle Ρ T_2

U(N) YM 1. Find connecting saddle Ρ T_2

U(N) YM 1. Find connecting saddle Ρ T_2 fix

Transition $P \sim 0.35$

 $P \sim 0.35$

Transition $P \sim 0.35$

 $P \sim 0.35$

U(N) YM

Test 2: SU(N) N = 1 deformed-SYM on $\mathbb{R}^3 \times S^1$ $\theta = \pi$

N = 1 SU(N) dSYM on $\mathbb{R}^3 \times S^1$, $\theta = \pi$ dSYM : small fermion mass breaks SUSY

N = 1 SU(N) dSYM on $\mathbb{R}^3 \times S^1$, $\theta = \pi$ dSYM : small fermion mass breaks SUSY Poppitz, Schäfer, Ünsal: 1205.0290, 1212.1238

Ünsal, Yaffe (dSYM): 0803.0344

Poppitz (review): 2111.10423

N = 1 SU(N) dSYM on $\mathbb{R}^3 \times S^1$, $\theta = \pi$ dSYM : small fermion mass breaks SUSY Poppitz, Schäfer, Ünsal: **SYM** 1205.0290, 1212.1238

Ünsal, Yaffe (dSYM): 0803.0344

Poppitz (review): 2111.10423

source: Poppitz, Schäfer, Ünsal 1205.0290 (modified)

N = 1 SU(N) dSYM on $\mathbb{R}^3 \times S^1$, $\theta = \pi$ dSYM : small fermion mass breaks SUSY Poppitz, Schäfer, Ünsal: **SYM** 1205.0290, 1212.1238

Ünsal, Yaffe (dSYM): 0803.0344

Poppitz (review): 2111.10423

Confined

Deconfined

Gaiotto et al. 1703.00501: At least centre or CP must be broken

Confined

Deconfined

Gaiotto et al. 1703.00501: At least centre or CP must be broken

Test 2. Check symmetries at transition

N = 1 SU(N) dSYM on $\mathbb{R}^3 \times S^1$, $\theta = \pi$ 1. Find connecting saddle

Temperature

N = 1 SU(N) dSYM on $\mathbb{R}^3 \times S^1$, $\theta = \pi$ 2. Check symmetries at transition 200 $\left\langle FF\right\rangle \begin{bmatrix} 175 \\ 150 \end{bmatrix} \times \begin{bmatrix} N=30 \\ + N=50 \\ N=70 \\ - N=\infty \end{bmatrix}$ ¥ 125 100 Order 75 parameter for 50 **CP** breaking 25 \bigotimes 0 35 30 40 45

₩

Confined

Deconfined

Partial

Chen, Fukishima, Nishimura, Tanizaki: 2006.01487

source: Chen et al. 2006.01487

Chen, Fukishima, Nishimura, Tanizaki: 2006.01487

source: Chen et al. 2006.01487

Confined

Deconfined

Partial

Partial confinement can be characterised by global symmetry breaking (in these systems)

Partial confinement: What about flux tubes?

source: Hanada, Shimada, Wintergerst 2001.10459

two-point function of con/dec subsectors

Test: U(N) pure YM large N, strong coupling

Confined subsector

Deonfined subsector

The partial phase has a linear potential in the confined subsector

Global symmetry breaking signature

	CP	Centre
Confine	X	
Deconfir		X
Partia	X	X

ed ned

Global symmetry Linear potential breaking signature subsector

	CP	Centre
Confine	X	
Deconfir		X
Partia	X	X

Questions: More systems / general theory

Questions: More systems / general theory Bound quarks?

Questions:

- More systems / general theory
 - Bound quarks?
 - t'Hooft-Higgs duality?

- More systems / general theory
 - Bound quarks?
 - t'Hooft-Higgs duality?
- - stable phase?

- More systems / general theory
 - Bound quarks?
 - t'Hooft-Higgs duality?
- JCD
 - stable phase?
 - χ SB vs. confinement

- More systems / general theory
 - Bound quarks?
 - t'Hooft-Higgs duality?
- JCD
 - stable phase?
 - χ SB vs. confinement
- Holography

Global symmetry Linear potential breaking signature subsector

	CP	Centre
Confine	X	
Deconfir		X
Partia	X	X

Global symmetry Linear potential breaking signature subsector

	CP	Centre
Confine	X	
Deconfir		X
Partia	X	X

Thank you for listening!

