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Abstract

We study the mson spectra in the excited QCD vacua, denominated repilcas. We find all
mesons have real masses, with no tachyons, thus showing the QCD replicas are indeed
metastable.
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In 1960 Gell-Mann and Levy, with the sigma model of Fig. 3, and soon after Nambu and
Jona-Lasinio modeled for the first time the spontaneous breaking of chiral symmetry.

Figure: The sigma model is 62 years old, what have we learned since then?

This is an effective ϕ4 model:

1. there are two extrema,

2. the particle masses2 are the vertical curvature,

3. in the true vacuum, mσ
2 > 0, mπ

2 = 0

4. in the false vacuum , mσ
2 < 0, mπ

2 < 0, we have tachyons : unstable vacuum

5. it is not renormalizable, not eligible as a field theory



The sigma model advanced physics a lot and is still used in Higgs sector of the
standard model. However it is just a model, it is not renormalizable.

In particle physics we have a theory with spontaneous breaking of chiral symmetry:
QCD., as verified by lattice QCD simulations. However we don’t yet know how to study
the QCD vacuum with the lattice.

In this talk I will show theoretical evidence that the QCD vacuum has a much richer
structure than the sigma mode, with a tower of metastable vacua. We denominate
these novel vacua the replicas of QCD.

Figure: This are the extrema we expect for QCD.
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Our approach is QCD in the Gaussian approximation for two cumulants [14, 16]. This
includes for instance the case of quark models, of the Dyson-Schwinger approach at
the rainbow-ladder level of truncation and of the large Nc limit of QCD,

H =

∫
d3x

[
ψ†(x) (m0β − iα⃗ · ∇⃗) ψ(x) +

1
2

∫
d4y

ψ(x)γµ
λa

2
ψ(x)g2⟨Aa

µ(x)A
b
ν(y)⟩ ψ(y)γν

λb

2
ψ(y) + · · · (1)

Figure: With this two cumulant diagram we can compute the dressed quark mass, the vacuum
stability, boundstates, the decay of resonances, etc

The quark kernel, K ab
µν(x , y), is derived from gluon configurations [5, 21] it can be

represented [11, 12, 7, 4] in Eq.(1) as,

K ab
µν(x , y) = g2⟨Aa

µ(x)A
b
ν(y)⟩. = δabΓµνKα+1

0 |⃗x − y⃗ |α. (2)

From all these studies, it emerged that although numerical values may vary somewhat,
as for instance when one goes from harmonic to linear confining kernels, the global
overall physical picture does not.



Figure: Examples of what the two cumulant approach implies.

Importantly, all the PCAC theorems, such as the Gell-Mann Oakes and Renner relation
for Mπ and ⟨ψ̄ψ⟩, the Goldberger and Treiman relation and the Weinberg Theorem for
ππ scattering, the Alder zero for pion couplings are verified [17, 20, 9].
Moreover this generates a constituent mass for the light quark, leading to chiral
symmetry restoration for excited hadrons, while for heavy quarks, a quasi classical
regime for hadrons must set in [15].



In Eq. (1 ), m0 is the current mass of the quark, for simplicity we will set m0 to zero.
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Figure: The dependence [3] of the constituent quark mass mc(k) on the current quark mass m0.

The big picture is independent of the details of the kernel: all the results will apply
equally well with any confining potential. In this talk and for numerical simplicity, we will
use the harmonic confining kernel.
The model of Eq.(1) was suggested in the mid-eighties [1, 17, 18], and latter re-derived
in terms of coherent states of 3P0 quark-antiquark pairs [11, 12].
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Figure: The first solution, φ0(k), of the mass gap equation, representing the vacuum |0⟩ and its two
first two other solution, φ(k)1 and φ(k)2 for a linear confining potential [7, 4], corresponding to the
truncated Coulomb gauge of QCD), computed in the chiral limit of mq barq = 0.

With confining kernels, there is an infinite tower of excited vacua-like states, the
replicas |R1⟩ , interpolating between the true chiral symmetry breaking, physical
vacuum, to the highest chiral invariant vacuum [17, 11, 7]. Examples of solutions in the
case of the linear potential [7] for the chiral angle φ are depicted in Fig. 6.
The mass gap equation for the vacua has similarities with the Bethe Salpeter equation
for Hadrons in the true vacuum, who also have an infinite tower of excited states. This
is a robust evidence for the replicas.



We also know that the number of tachyon states for the false chiral invariant vacuum
becomes infinite [3] in the pseudoscalar and scalar channels, whereas, from the true
vacuum, we have an infinite set of true hadronic states. This shows the false vacuum is
unstable while the true vacuum |0⟩ is stable, it is an absolute minimum.

For infinite volumes, the different vacua correspond to orthogonal 3P0 coherent states
so that, two different coherent states, have a zero overlap between them, hence being
independent of each other. In addition, they are separated apart by an infinite amount
of energy [8, 2] . For a finite volume, see Fig. 7.
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Figure: We show (blue) the overlap ⟨R1|0⟩ and (orange) the corresponding energy ER1 of the first
replica for different spherical bubble radii. The energy density is (ER1 ≃ 87.2476 MeV/fm3 (using
K0 ≃ 300MeV ) and, for instance, with finite a radius of only 5 fm, we would had to add to any
hadronic excitation in R1 another 45 GeV, and this for an overlap ⟨R1|0⟩ = 2.9 × 10−16.
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There are three equivalent methods to solve the mass gap equation:
1. assume a quark-antiquark 3P0 coherent state, and minimize its correspondent

energy density,
2. rotate the quark fields by a Bogoliubov-Valatin canonical transformation to

diagonalize the Hamiltonian,
3. solve the Schwinger-Dyson equations for the quark propagators.

Any of these methods lead to the same mass gap equation and mc(k).

Technically, it is convenient to decompose the relativistic invariant Dirac-Feynman
propagators [17, 10], in the quark and antiquark Bethe-Goldstone propagators, with
quark and antiquark spinors us and vs , close to the formalism of non-relativistic quark
models,

SDirac(k0, k⃗) =
i

̸ k − m + iϵ
=

∑
s usu†

sβ

k0 − E(k) + iϵ
−

∑
s vsv†

s β

−k0 − E(k) + iϵ
(3)

Replacing the propagator of Eq. (3) in its Schwinger-Dyson equation,

0 = u†
s (k)

{
kk̂ · α⃗ + m0β −

∫
dw ′

2π
d3k ′

(2π)3
iV (k − k ′)

∑
s′

[
u(k ′)s′u†(k ′)s′

w ′ − E(k ′) + iϵ
−

v(k ′)s′v†(k ′)s′

−w ′ − E(k ′) + iϵ

] vs′′ (k)

E(k) = u†
s (k)

{
kk̂ · α⃗ + m0β −

∫
dw ′

2π
d3k ′

(2π)3
iV (k − k ′)

∑
s′

[
u(k ′)s′u†(k ′)s′

w ′ − E(k ′) + iϵ
−

v(k ′)s′v†(k ′)s′

−w ′ − E(k ′) + iϵ

] us(k), (4)



It was shown that for the wide class of confining potentials [7], with the exponent
0 < α ≤ 2 – see Eq.(2) – it leads to an infinite number of solutions of the mass gap
equation.

The two cases mostly studied in the literature are the quadratic case, α = 2, derived in
the Gaussian approximation to QCD and using the Balitsky Local Coordinate Gauge
[5], and the linear case α = 1, derived in the Coulomb gauge. In the case of a linear
confining potential, we get integral equations. They are finite but need a regularization
of infrared divergences.

With the simple harmonic interaction [17], the integral of the potential is a Laplacian,
and the mass gap equation can be transformed into a differential equation. The mass
gap equation and the quark energy are finally given by,

∆φ(k) = 2kS(k) − 2m0C(k) −
2S(k)C(k)

k2

E(k) = kC(k) + m0S(k) −
φ′(k)2

2
−

C(k)2

k2
. (5)

Numerically, this equation is a non-linear ordinary differential equation. It can be solved
with the Runge-Kutta and shooting method.

Examples of solutions, for different light current quark masses m0, are depicted in
Fig.(5). The effect of a small finite current quark mass m0 ∼ 0.01K0, typical of the light
u and d quarks, can be easily estimated as a small increase of the dynamically
generated constituent quark mass mc and does not concern us here.
Examples of replica solutions, for the linear potential, are shown in Fig. 6.
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V++ = V−−

spin-indep. − d2

dk2 + L2

k2 + 1
4

(
φ′

q
2 + φ′

q̄
2
)
+ 1

k2

(
Gq + Gq̄

)
spin-spin 4

3k2 GqGq̄Sq · Sq̄

spin-orbit 1
k2

[(
Gq + Gq̄

) (
Sq + Sq̄

)
+

(
Gq − Gq̄

) (
Sq − Sq̄

)]
· L

tensor − 2
k2 GqGq̄

[
(Sq · k̂)(Sq̄ · k̂)− 1

3 Sq · Sq̄

]
V+− = V−+

spin-indep. 0
spin-spin − 4

3

[
1
2φ

′
qφ

′
q̄ + 1

k2 CqCq̄

]
Sq · Sq̄

spin-orbit 0
tensor

[
−2φ′

qφ
′
q̄ + 2

k2 CqCq̄

] [
(Sq · k̂)(Sq̄ · k̂)− 1

3 Sq · Sq̄

]
Table: The positive and negative energy spin-independent, spin-spin, spin-orbit and tensor
potentials are shown. φ′(k), C(k) and G(k) = 1 − S(k) are functions of the quark mass mc(k).

The Salpeter-RPA equations for a meson (a colour singlet quark-antiquark bound
state) can be derived either from the qq̄ Lippman-Schwinger equations, or by replacing
the propagator of Eq.(3) in the Bethe-Salpeter equation. In either way, one gets [10],

χ(k ,P) =

∫
d3k ′

(2π)3
V (k − k ′)

[
u(k ′

1)ϕ
+(k ′,P)v†(k ′

2) + v(k ′
1)ϕ

−t
(k ′,P)u†(k ′

2)
]

ϕ+(k ,P) =
u†(k1)χ(k ,P)v(k2)

+M(P)− E(k1)− E(k2)
, ϕ−

t
(k ,P) =

v†(k1)χ(k ,P)u(k2)

−M(P)− E(k1)− E(k2)
. (6)

These equations [12, 19] have positive ϕ+ and negative ϕ− energy wave functions.
The Pauli σ⃗ matrices in the spinors of Eq.(3), produce the [6] potentials of Table 1.
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Notice that both the pseudoscalar and scalar equations have a system with two
equations. However, the spin-dependent interactions couple an extra pair of equations,
both in the vector and axial-vector channels. We now combine the spin-dependent
potentials of Table 1, to derive the full Salpeter-RPA radial bound state equations.
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Figure: The constituent quark masses mc(k) in the chiral limit m0 = 0, solutions of the mass gap
equation, from left to right for the ground state vacuum and first two replicas.
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Figure: The JPC = 0−+, 1S0 normalized pseudoscalar (P) radial wave functions ϕ+ (in blue) and
ϕ− (in yellow), from left to right for the ground state vacuum and first two replicas, in dimensionless
in units of K0 = 1. Because the normalization diverges in the chiral limit, we arbitrarily normalize
the wave functions with ϕ(0) = 1. Importantly, the wavefunctions ϕ± are identical to
± sinφ(k) = ±mc(k)/

√
k + mc(k) as is easily verified from Fig. 5.
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Figure: The JPC = 0++, 3P0 normalized scalar (S) radial wave functions ϕ+ (in blue) and ϕ− (in
yellow), from left to right for the ground state vacuum and first two replicas, in dimensionless in units
of K0 = 1.
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To solve numerically our differential equations, we use finite centred differences for the
Laplacian. Since our mass gap equation is non-linear, we utilize the shooting method,
so as to have the mass to vanish at a large enough UV momentum cutoff K . We use a
very fine mesh in momentum space because the replicas have nodes, quite close to
the momentum origin.
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Figure: The JPC = 1+−, 1P1 normalized axial vector (A) radial wave functions ϕ+ (in blue) and ϕ−

(in yellow), from left to right for the ground state vacuum and first two replicas, in dimensionless in
units of K0 = 1.
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Figure: The JPC = 1++, 3P1 normalized axial vector (A) radial wave functions ϕ+ (in blue) and ϕ−

(in yellow), from left to right for the ground state vacuum and first two replicas, in dimensionless in
units of K0 = 1.

Our bound state equations can be understood as an extension of the Shrödinger
equation, since we now have positive ϕ+ and negative ϕ− energy components of the
wave functions, and this doubles the number of components. Nevertheless we have
the same number of meson states as in the spectrum of the normal quark model. The
mass splittings can also be related, as usual, to spin-tensor potentials. We use sparse
matrices and matrix eigenvalues to compute the meson spectrum.



We now address the main goal of this study: to show that the quark-antiquark bound
states – the mesons in the replicas – all have real excess masses.

With the effective quark masses m(k), we can compute the chiral angle, using
m(k)/k = tan[φ(k)]. According to the chiral theorem on the pion Salpeter amplitude
[12, 9], the sine of the chiral angle sin[φ(k)] = mc(k)/

√
k + mc(k) should be

proportional to the wave functions ϕ±(k) of the pion. This is clearly the case, when we
compare the mass represented in Fig. 5 with the wavefunction shown in Fig. 9 .

For the ground state vacuum and for the first two replicas, in Figs. 9 and 10 , we show,
respectively and in dimensionless in units of K0 = 1, the wave functions ϕ+ and ϕ−, for
the pseudoscalar meson and the radial wave functions ν+ and ν− for the scalar
meson. We notice that the number of nodes of these pseudoscalar wave functions
depends on the replica where they are sitting, they have the same number of nodes as
the constituent quark mass. This is expected due to the chiral theorem relating the pion
wave function to the constituent quark mass [12, 9] .

We also show, in Figs. 10 – 13 , the radial wave functions of the scalar, vector and axial
vector mesons. Notice how the wave functions change from one replica to another. It is
interesting to remark that, for the replicas, the excess masses of the mesons depend
very little on the replica (and the physical vacuum) they are sitting in.

The masses scale with K0, equivalent to the string tension. Even at finite temperature
with a small K0, this scenario will hold.



meson in vacuum replica ⟨R1|0⟩ replica ⟨R2|0⟩ false vacuum
P (JPC = 0−+) 0.00 0.00 0.00 i∞
P* (JPC = 0−+) 5.539 5.577 5.581 i∞
S (JPC = 0++) 3.266 3.253 3.247 i∞
V0 (JPC = 1−−) 2.686 2.823 2.836 3.71
V2 (JPC = 1−−) 4.965 4.635 4.599 4.59
A (JPC = 1+−) 4.103 3.784 3.723 3.71
A (JPC = 1++) 4.665 4.602 4.596 4.59

Table: Masses of the mesons in the ground state vacuum (the true one) and excess masses for the
first two replicas, and false vacuum, in units of K0. For the mesons we show the pseudoscalar, the
first excitation of the pseudoscalar, the scalar, the vector (mostly s-wave), the first excitation of the
vector (mostly d-wave) and the two different axial vectors.

The real nature of the excess masses of the mesons, constitute the main result of this
work. Our final results are shown in Table 2.
Prior to this study, we were not sure what the masses of the mesons would be in the
excited replica vacua. As in the false - chiral invariant - vacuum, we could possibly
have tachyons. Their tachyonic free nature, show that the replicas and thus metastable.
More recently, this study has been extended [13] to the linear confining potential, with
α = 1 (see Fig.6) and to a small finite current mass m0 (see Fig. 5) .
As it stands, we cannot have all the low energy properties of hadronic physics due to
SχSB without having replicated states as a subproduct. It would be extremely
interesting to look wether such metastable replicas do actually exist in full QCD.
Acknowledgements
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