Determination of α_s value from tau decays with a renormalon-motivated approach

César Ayala, Gorazd Cvetič and Diego Teca (UTFSM, Valparaíso)

Talk presented by G.C.

[work in progress, continuation of our work 2112.01992 and EPJC **81** (2021) 930 (arxiv: 2105.00356) and EPJC **82** (2022) 362 (arxiv: 2112.01992)]

XVQCD, Stavanger, August 4, 2022

- We use ALEPH data for the strangeless semihadronic tau decay in the sum rules.
- The weight functions in the sum rules are Borel-Laplace, as an additional filter we use the momenta $a^{(2,0)}$ and $a^{(2,1)}$.
- For the theoretical expression of the sum rules we will use an improved version of the truncated OPE.
 - For D = 0 part we use Adler function d(Q²)_{D=0} whose higher order expansion coefficients are predicted by the structure of the leading IR and UV renormalons.
 - **2** The D = 4 term has the known structure $\sim 1/(Q^2)^2$, while D = 6 terms $\sim 1/(Q^2)^3$ are *supplemented* by the required terms $\sim \alpha_s (Q^2)^{k_j}/(Q^2)^3$ reflected by the renormalon structure of the constructed Adler function extension; we truncate at D = 6.

- In the evaluation of the D = 0 part of the sum rules we apply the (truncated) FOPT, and the Borel resummation with PV (with truncated correction polynomial).
- For each truncation index, we extract the value of α_s from the fit of the sum rules with doubly-pinched Borel-Laplace weight function.
- The best truncation index is inferred from consideration of the (doubly-pinched) FESRs momenta $a^{(2,0)}$ and $a^{(2,1)}$.
- The averaged extracted value of α_s will be presented.

Sum rules

The Adler function $\mathcal{D}(Q^2)$ is logarithmic derivative of the quark current polarisation function $\Pi(Q^2)$

$$\mathcal{D}(Q^2) \equiv -2\pi^2 \frac{d\Pi(Q^2)}{d\ln Q^2},\tag{1}$$

where $Q^2 \equiv -q^2$ (= $-(q^0)^2 + \vec{q}^2$). We will consider the total (V+A)-channel, i.e., $\Pi(Q^2)$ will be the total (V+A)-channel polarisation function

$$\Pi(Q^2) = \Pi_{\rm V}^{(1)}(Q^2) + \Pi_{\rm A}^{(1)}(Q^2) + \Pi_{\rm A}^{(0)}(Q^2).$$
⁽²⁾

We neglect $\Pi_V^{(0)}$ because $\mathrm{Im}\Pi_V^{(0)}(-\sigma + i\epsilon) \propto (m_d - m_u)^2$ is negligible. According to the general principles of Quantum Field Theory, $\Pi(Q^2; \mu^2)$ and $\mathcal{D}(Q^2)$ are holomorphic (i.e., analytic) functions of Q^2 in the complex Q^2 -plane with the excepcion of the real negative axis $(-\infty, -m_\pi^2)$. If $g(Q^2)$ is a (arbitrary) holomorphic function of Q^2 , and we apply the Cauchy theorem to the integral $\oint dQ^2g(Q^2)\Pi(Q^2;\mu^2)$ along a closed path in the complex Q^2 -plane in Fig. 1, we obtain

Figure: The closed integration path $C_1 + C_2$ for $\oint dQ^2 g(Q^2) \Pi(Q^2)$. The radius of the circle C_2 is $|Q^2| = \sigma_m$ (= 2.8 GeV²). On the path C_1 we have $\varepsilon \to +0$.

$$\oint_{C_1+C_2} dQ^2 g(Q^2) \Pi(Q^2) = 0$$

$$\Rightarrow \int_0^{\sigma_{\rm m}} d\sigma g(-\sigma) \omega_{\rm exp}(\sigma) = -i\pi \oint_{|Q^2|=\sigma_{\rm m}} dQ^2 g(Q^2) \Pi_{\rm th}(Q^2),$$
(3b)

where $\omega(\sigma)$ is proportional to the discontinuity (spectral) function of the (V+A)-channel polarisation function

$$\omega(\sigma) \equiv 2\pi \operatorname{Im} \, \Pi(Q^2 = -\sigma - i\epsilon) \,. \tag{4}$$

Integration by parts replaces the theoretical polarisation function in the sum rule (3b) by the Adler function (1)

$$\int_{0}^{\sigma_{\rm m}} d\sigma g(-\sigma) \omega_{\rm exp}(\sigma) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \, \mathcal{D}_{\rm th}(\sigma_{\rm m} e^{i\phi}) \mathcal{G}(\sigma_{\rm m} e^{i\phi}), \qquad (5)$$

where $\mathcal{D}_{th}(Q^2)$ is given by the theoretical OPE expansion of the Adler function, and the (holomorphic) function *G* is an integral of *g*:

$$G(Q^2) = \int_{-\sigma_{\rm m}}^{Q^2} dQ'^2 g(Q'^2).$$
 (6)

Sum rules

The quantity $\omega(\sigma)$ was measured to a high precision by ALEPH Collaboration, in semihadronic strangeless τ -decays, Fig. 2.

Figure: The spectral function $\omega(\sigma)$ for the (V+A)-channel, as measured by ALEPH Collaboration. The extremely narrow pion peak contribution $2\pi^2 f_{\pi}^2 \delta(\sigma - m_{\pi}^2)$ ($f_{\pi} = 0.1305 \text{ GeV}$) has to be added to this. The last two bins have large uncertainties, so we exclude them, and this means that $\sigma_m = 2.80 \text{ GeV}^2$ in the sum rules.

The theoretical OPE expression of the polarisation function that is usually used in the literature has the following form:

$$\Pi_{\rm th}(Q^2;\mu^2) = -\frac{1}{2\pi^2} \ln\left(\frac{Q^2}{\mu^2}\right) + \Pi(Q^2)_{D=0} + \sum_{k\geq 2} \frac{\langle O_{2k}\rangle}{(Q^2)^k} \left(1 + \mathcal{O}(a)\right).$$
(7)

The corresponding Adler function (1) is then

$$\mathcal{D}_{\rm th}(Q^2) \equiv -2\pi^2 \frac{d\Pi_{\rm th}(Q^2)}{d\ln Q^2} = 1 + d(Q^2)_{D=0} + 2\pi^2 \sum_{k \ge 2} \frac{k \langle O_{2k} \rangle}{(Q^2)^k}.$$
 (8)

However, the theoretically better motivated OPE expansion of the Adler function has the following form, based on a complicated RGE-dependence of the higher D operators:

$$\mathcal{D}_{\rm th}(Q^2) \equiv -2\pi^2 \frac{d\Pi_{\rm th}(Q^2)}{d\ln Q^2} = d(Q^2)_{D=0} + 1 + 4\pi^2 \frac{\langle O_4 \rangle}{(Q^2)^2} + \frac{6\pi^2}{(Q^2)^3} \left[\langle O_6^{(2)} \rangle a(Q^2)^{k^{(2)}} + \langle O_6^{(1)} \rangle a(Q^2)^{k^{(1)}} \right] + \dots,$$
(9)

which has two different condensates at D = 6, with the approximate values where $k^{(2)} = \gamma^{(1)}(O_6^{(2)})/\beta_0 \approx 0.222 \ (= 1 - \kappa_2)$ and $k^{(1)} = \gamma^{(1)}(O_6^{(1)})/\beta_0 \approx 0.625 \ (= 1 - \kappa_1)$ (Boito, Hornung, Jamin (BHJ), 2015), where $\gamma^{(1)}(O_6^{(j)})$ is the effective leading-order anomalous dimension of the operator $O_6^{(j)}$ (BHJ, 2015).

The perturbation expansion of $d(Q^2)_{D=0}$ in powers of $a(\mu^2) \equiv \alpha_s(\mu^2)/\pi$ is $d(Q^2)_{D=0,\text{pt}} = d_0 a(\kappa Q^2) + d_1(\kappa) a(\kappa Q^2)^2 + \ldots + d_n(\kappa) a(\kappa Q^2)^{n+1} + \ldots,$ (10) (where $d_0 = 1$), and the expansion of the Borel transform $\mathcal{B}[d](u;\kappa)$ is

$$\mathcal{B}[d](u;\kappa) \equiv d_0 + \frac{d_1(\kappa)}{1!\beta_0}u + \ldots + \frac{d_n(\kappa)}{n!\beta_0^n}u^n + \ldots$$
(11)

The behaviour of $\mathcal{B}[d](u; \kappa)$ close to the renormalon IR singularities u = 2, 3, ... is

 $\mathcal{B}[d](u;\kappa) \sim 1/(2-u)^{1+2\beta_1/\beta_0^2}, 1/(2-u)^{2\beta_1/\beta_0^2}, \dots (p=2),$ (12a $\mathcal{B}[d](u;\kappa) \sim 1/(p-u)^{\kappa_j^{(p)}+p\beta_1/\beta_0^2}, 1/(p-u)^{\kappa_j^{(p)}-1+p\beta_1/\beta_0^2}, \dots (p=3,4,\dots))$ (12b)

Here, $\kappa_j^{(p)} = 1 - \gamma^{(1)}(O_{2p}^{(j)})/\beta_0$, where $\gamma^{(1)}(O_{2p}^{(j)})$ is the effective leading-order anomalous dimension of the D = 2p dimensional OPE operator $O_{2p}^{(j)}$ appearing in the OPE of the Adler function; $\beta_0 = (11 - 2N_f/3)/4$ and $\beta_1 = (1/16)(102 - 38N_f/3)$ are the first two β -function coefficients appearing in the RGE

$$\frac{da(Q^2)}{d\ln Q^2} = -\beta_0 a(Q^2)^2 - \beta_1 a(Q^2)^3 - \bar{\beta}_2 a(Q^2)^4 - \dots$$
(13)

This, and the requirement that the Q^2 -dependence of the dimension D = 2p terms of the corresponding OPE for Adler $\mathcal{D}(Q^2)$ is the same as that of the renormalon ambiguity of the inverse Borel transformation (Borel integral)

$$\delta \mathcal{D}(Q^2)_{\boldsymbol{p},\boldsymbol{\kappa}_j^{(\boldsymbol{p})}} \sim \frac{1}{\beta_0} \mathrm{Im} \int_{+i\varepsilon}^{+\infty+i\varepsilon} du \exp\left(-\frac{u}{\beta_0 a(Q^2)}\right) 1/(\boldsymbol{p}-u)^{\boldsymbol{\kappa}_j^{(\boldsymbol{p})}+\boldsymbol{p}\beta_1/\beta_0^2},$$
(14)

implies that the corresponding OPE terms are

$$\mathcal{D}(Q^{2})_{D=2p,\kappa_{j}^{(p)}} \sim \frac{1}{(Q^{2})^{p}} a(Q^{2})^{1-\kappa_{j}^{(p)}} [1+\mathcal{O}(a)] \\ = \frac{1}{(Q^{2})^{p}} a(Q^{2})^{\gamma^{(1)}(\mathcal{O}_{2p}^{(j)})/\beta_{0}} [1+\mathcal{O}(a)].$$
(15)

In addition, there are also UV renormalon poles at u = -p = -1, -2, ... $\mathcal{B}[d](u;\kappa) \sim 1/(p+u)^{2-p\beta_1/\beta_0^2}, 1/(p+u)^{1-p\beta_1/\beta_0^2}, ... (p = 1, 2, ...),$ (16)

where we assumed for the effective leading-order anomalous dimensions the values of the large- β_0 approximation. If we, on the other hand, reorganise the expansion (10) of $d(Q^2)_{D=0}$ in

powers of logarithmic derivatives

$$\widetilde{a}_{n+1}(Q^2) \equiv \frac{(-1)^n}{n!\beta_0^n} \left(\frac{d}{d\ln Q^2}\right)^n a(Q^2) \qquad (n = 0, 1, 2, \ldots), \tag{17}$$

$$[\text{note: } \widetilde{a}_{n+1}(Q^2) = a(Q^2)^{n+1} + \mathcal{O}(a^{n+2})] \text{ we obtain}$$

$$d(Q^2)_{D=0, \text{lpt}} = \widetilde{d}_0 a(\kappa Q^2) + \widetilde{d}_1(\kappa) \widetilde{a}_2(\kappa Q^2) + \ldots + \widetilde{d}_n(\kappa) \widetilde{a}_{n+1}(\kappa Q^2) + \ldots \tag{18}$$

By use of the $(\overline{\text{MS}})$ RGE, we can relate the new coefficients d_n with the original ones d_n, d_{n-1}, \ldots

We now construct the Borel transform $\mathcal{B}[\widetilde{d}](u)$ [related to the original Borel transform $\mathcal{B}[d](u)$ of the Adler function (11) by $d_n \mapsto \widetilde{d}_n$]

$$\mathcal{B}[\widetilde{d}](u;\kappa) \equiv \widetilde{d}_0 + \frac{\widetilde{d}_1(\kappa)}{1!\beta_0}u + \ldots + \frac{\widetilde{d}_n(\kappa)}{n!\beta_0^n}u^n + \ldots$$
(19)

It turns out that this transform has the simple one-loop renormalisation scale dependence (in contrast to the original $\mathcal{B}[d](u)$)

$$\frac{d}{d\ln\kappa}\widetilde{d}_n(\kappa) = n\beta_0\widetilde{d}_{n-1}(\kappa) \quad \Rightarrow \quad \mathcal{B}[\widetilde{d}](u;\kappa) = \kappa^u \mathcal{B}[\widetilde{d}](u).$$
(20)

Therefore, we will take the structure of renormalon singularities with $\beta_1\mapsto 0),$ i.e.,

$$\mathcal{B}[\widetilde{d}](u;\kappa) \sim 1/(2-u)^{1}, 1/(3-u)^{\kappa_{2}}, 1/(3-u)^{\kappa_{1}}, \dots; 1/(1+u)^{2}, 1/(1+u)^{1}, \dots$$
(21)

where the powers $\kappa_2 = 0.778 \ [= 1 - k_2 = 1 - \gamma^{(1)}(O_6^{(2)})/\beta_0]$ and $\kappa_2 = 0.375 \ [= 1 - k_1 = 1 - \gamma^{(1)}(O_6^{(1)})/\beta_0]$ are obtained from BHJ (2015) [cf. Eq. (9)]. In addition, terms of "0" powers $\ln(1 - u/2), \ln(1 - u/3)$, etc. can appear

It can be shown then that this will imply for $\mathcal{B}[d](u;\kappa)$ the corresponding structures

$$\mathcal{B}[d](u;\kappa) \sim \frac{1}{(2-u)^{1+2\beta_1/\beta_0^2}} [1+\mathcal{O}(2-u)],$$

$$\mathcal{B}[d](u;\kappa) \sim \frac{1}{(3-u)^{\kappa_2+3\beta_1/\beta_0^2}} [1+\mathcal{O}(3-u)],$$

$$\mathcal{B}[d](u;\kappa) \sim \frac{1}{(3-u)^{\kappa_1+3\beta_1/\beta_0^2}} [1+\mathcal{O}(3-u)],$$

$$\mathcal{B}[d](u;\kappa) \sim \frac{1}{(1+u)^{2-1\beta_1/\beta_0^2}} [1+\mathcal{O}(1+u)],$$

$$\mathcal{B}[d](u;\kappa) \sim \frac{1}{(1+u)^{1-1\beta_1/\beta_0^2}} [1+\mathcal{O}(1+u)].$$
(22)

This is in agreement with the teoretical expectations Eqs. (12).

The ansatz made for $\mathcal{B}[\tilde{d}](u)$ (with $\kappa = 1$) in the $\overline{\mathrm{MS}}$ scheme includes the singularities at the locations u = 2, 3 and u = -1

$$\mathcal{B}[\widetilde{d}](u) = \exp\left(\widetilde{K}u\right) \pi\left\{\widetilde{d}_{2,1}^{\mathrm{IR}}\left[\frac{1}{(2-u)} + \widetilde{\alpha}(-1)\ln\left(1-\frac{u}{2}\right)\right] + \frac{\widetilde{d}_{3,2}^{\mathrm{IR}}}{(3-u)^{\kappa_2}} + \frac{\widetilde{d}_{3,1}^{\mathrm{IR}}}{(3-u)^{\kappa_1}} + \frac{\widetilde{d}_{1,2}^{\mathrm{UV}}}{(1+u)^2}\right\},$$
(23)

where the value of the parameter $\tilde{\alpha}$ in the $\overline{\text{MS}}$ scheme is fixed, $\tilde{\alpha} = -0.255$ (G.C.(2019, PRD)). The other five parameters (\tilde{K} and the residues $\tilde{d}_{2,1}^{\text{IR}}, \tilde{d}_{3,2}^{\text{IR}}, \tilde{d}_{3,1}^{\text{IR}}, \tilde{d}_{1,2}^{\text{UV}}$) are determined by the knowledge of the first five coefficients d_n (and thus \tilde{d}_n), n = 0, 1, 2, 3, 4. We take as the central value of d_4 the value $d_4 = 275$., obtained by ECH (Kataev,Starshenko(1995)). Other estimates are $d_4 = 277 \pm 51$ (Boito et al.(2018)); $d_4 = 283$ (Beneke, Jamin(2008)); $d_4 = 338.19$ from this type of model in the miniMOM scheme (G.C.(2019)). The variation from $d_4 = 275$. to $d_4 = 338.19$ we include by

$$d_4 = 275. \pm 63.$$

(日) (圖) (圖) (圖)

Table: The values of \tilde{K} and of the renormalon residues $\tilde{d}_{i,j}^{X}$ (X=IR,UV) for the five-parameter ansatz (23) in the \overline{MS} scheme, when d_4 is taken according to Eq. (24).

d_4		$\widetilde{d}_{2,1}^{\mathrm{IR}}$	$\widetilde{d}_{3,2}^{\mathrm{IR}}$	$\widetilde{d}_{3,1}^{\mathrm{IR}}$	$\widetilde{d}_{1,2}^{\mathrm{UV}}$
275.	0.16010	0.661852	2.04546	-0.68316	-0.0121699
275 63.	-0.33879	0.986155	6.75278	-2.74029	-0.011647
275. + 63.	0.5190	1.10826	-0.481538	-0.511642	-0.0117704

Table: The $\overline{\text{MS}}$ coefficients \tilde{d}_n and d_n (with $\kappa = 1$) ($n \le 10$) for the case 275. [cf. Eq. (24)].

п	$d_4 = 275.: \ \widetilde{d}_n$	d_n
0	1	1
1	1.63982	1.63982
2	3.45578	6.37101
3	26.3849	49.0757
4	-25.4181	275.
5	1859.36	3206.48
6	-19035.2	16901.6
7	421210.	358634.
8	$-7.80444 imes 10^{6}$	621177.
9	$1.82502 imes10^8$	7.52194×10^7
10	$-4.43137 imes 10^9$	-5.21168 × 10 ⁸

César Ayala, Gorazd Cvetič and Diego Teca (

Weight functions $g(Q^2)$ used in the sum rules (5): The double-pinched Borel-Laplace transforms $B(M^2)$ where M^2 is a complex squared energy parameter:

$$g_{M^2}(Q^2) = \left(1 + \frac{Q^2}{\sigma_{\rm m}}\right)^2 \frac{1}{M^2} \exp\left(\frac{Q^2}{M^2}\right) \Rightarrow$$
 (25)

On the other hand, one can use FESRs with (double-pinched) momenta $a^{(2,n)}$ which are associated with the following weight functions $g^{(2,n)}$ (n = 0, 1, ...):

$$g^{(2,n)}(Q^2) = \left(\frac{n+3}{n+1}\right) \frac{1}{\sigma_m} \left(1 + \frac{Q^2}{\sigma_m}\right)^2 \sum_{k=0}^n (k+1)(-1)^k \left(\frac{Q^2}{\sigma_m}\right)^k (26)$$

1.) Fixed Order Perturbation Theory using powers (FO): The truncated power expansion $d(\sigma_{\rm m}e^{i\phi})_{D=0,{\rm pt}}^{[N_t]}$ [cf. Eq. (10)]

$$d(\sigma_{\rm m} e^{i\phi})_{D=0,{\rm pt}}^{[N_t]} = a(\sigma_{\rm m} e^{i\phi}) + \sum_{n=1}^{N_t-1} d_n(\kappa) a(\sigma_{\rm m} e^{i\phi})^{n+1}, \qquad (27)$$

which appears in the contour integrals in the sum rules, Eqs. (45) and (48b), is written as truncated Taylor expansion in powers of $a(\sigma_m)$ up to (and including) $a(\sigma_m)^{N_t}$.

Methods of evaluation of the D = 0 contribution

3.) Inverse Borel Transformation with Principal Value (PV): The expression for the D = 0 part of the Adler function in the contour integrals is written as

$$\begin{pmatrix} d(\sigma_{\rm m}e^{i\phi})_{D=0} \end{pmatrix}^{({\rm PV},[N_t])} = \\ \frac{1}{\beta_0} \frac{1}{2} \left(\int_{\mathcal{C}_+} + \int_{\mathcal{C}_-} \right) du \exp\left[-\frac{u}{\beta_0 a(\kappa \sigma_{\rm m} e^{i\phi})} \right] \mathcal{B}[d](u;\kappa)_{\rm sing} \\ + \delta d(\sigma_{\rm m} e^{i\phi};\kappa)_{D=0}^{[N_t]},$$
(28)

where $\mathcal{B}[d](u;\kappa)_{sing}$ is the singular part of the Borel transform of $d(Q^2)_{D=0}$, the arithmetic average over the integration paths C_{\pm} gives the Principal Value, and $\delta d(\sigma_m e^{i\phi};\kappa)_{D=0}^{[N_t]}$ is the truncated series in powers of $a(\sigma_m e^{i\phi})$ which completes the power terms corresponding to the Inverse Borel Transform of the singular part; we refer for a more detailed explanation to (C.A., G.C., D.T. 2021, EPJC [Sec. IV.B there]).

Results of fitting

We use the V+A channel of ALEPH, with $\sigma \leq \sigma_m = 2.8 \ {\rm GeV}^2$. The Borel-Laplace sum rules are applied in practice to the Real parts

$$\operatorname{Re}B_{\exp}(M^{2};\sigma_{\mathrm{m}}) = \operatorname{Re}B_{\mathrm{th}}(M^{2};\sigma_{\mathrm{m}}),$$
 (29)

where for the Borel-Laplace scale parameters M^2 we take $M^2 = |M^2| \exp(i\Psi)$, where $0 \le \Psi < \pi/2$. Specifically, we take $0.9 \text{ GeV}^2 \le |M^2| \le 1.5 \text{ GeV}^2$, and $\Psi = 0, \pi/6, \pi/4$. We minimised the difference between the two quantities (29) by minimising, with respect to 4 parameters (α_s , $\langle O_4 \rangle$, $\langle O_4^{(1)} \rangle$ and $\langle O_4^{(2)} \rangle$) the sum of squares

$$\chi^{2} = \sum_{\alpha=0}^{n} \left(\frac{\operatorname{Re}B_{\operatorname{th}}(M^{2}_{\alpha};\sigma_{\operatorname{m}}) - \operatorname{Re}B_{\exp}(M^{2}_{\alpha};\sigma_{\operatorname{m}})}{\delta_{B}(M^{2}_{\alpha})} \right)^{2}, \quad (30)$$

where M_{α}^2 is a set of 9 points along the chosen rays with $\Psi = 0, \pi/6, \pi/4$ and 0.9 GeV² $\leq |M|^2 \leq 1.5$ GeV². Further, $\delta_B(M^2_{\alpha})$ are the experimental standard deviations of $\operatorname{Re}B_{\exp}(M^2_{\alpha}; \sigma_{\mathrm{m}})$. We usually get very small $\chi^2 \lesssim 10^{-3}$.

Results of fitting

support Ukraine 24 / 40

The extracted values for α_s are

 $\begin{aligned} \alpha_{\mathfrak{s}}(m_{\tau}^2)^{(\text{FO})} &= 0.3175 \pm 0.0023(\exp)^{-0.0007}_{+0.0089}(\kappa)^{-0.0081}_{+0.0050}(d_4)^{+0.0033}_{-0.0028}(N_t) \\ &= 0.3175^{+0.0109}_{-0.0089}(N_t = 8^{+2}_{-3}), \\ \alpha_{\mathfrak{s}}(m_{\tau}^2)^{(\text{PV})} &= 0.3193 \pm 0.0024(\exp)^{-0.0013}_{-0.0010}(\kappa)^{-0.0086}_{+0.0035}(d_4) \mp 0.0001(N_t) \\ &\mp 0.0003(\text{amb}) = 0.3193^{+0.0043}_{-0.0091} \quad (N_t = 5^{+2}_{-1}). \end{aligned}$

Experimental uncertaities were obtained by the method of Boito, Peris et al. (2011).

The central values were extracted for the truncation index $N_t = 8,5$ for the methods FO, and PV, respectively. Renormalisation scale parameter κ varies around $\kappa = 1$ in the interval: $1/2 \le \kappa \le 2$.

Results of fitting and Conclusions

The average of the two methods gives

$$\alpha_s(m_\tau^2) = 0.3184^{+0.0044}_{-0.0091} \tag{32}$$

$$\Rightarrow \alpha_{s}(M_{Z}^{2}) = 0.1185^{+0.0005}_{-0.0012}.$$
(33)

PDG 2022 gives for average of lattice groups: $\alpha_s(M_Z^2) = 0.1182 \pm 0.0008$; and the average of the nonlattice groups: $\alpha_s(M_Z^2) = 0.1176 \pm 0.0010$.

From(31) we see that the theoretical uncertainties due to the uncertainty of the value of d_4 coefficient are the most important. They are larger than the experimental uncertainties. This indicates that in the considered process, the theory remains behind the experiment. Semihadronic τ -decays remain a challenge for perturbative QCD.

Thank you for your attention.

Appendix A: Further details of the results

Figure: The moment $a^{(2,0)}(\sigma_m)$ (a) and $a^{(2,1)}(\sigma_m)$ (b), as a function of the truncation index N_t , for FO and PV approaches. At each N_t , the corresponding values of the parameters α_s and $\langle O_D \rangle$ obtained from the Borel-Laplace fit were used. The light blue band represents the experimental values (based on the ALEPH data). The best stability under variation of N_t is for $N_t = 8$, 5, respectively.

Table: The results for $\alpha_s(m_{\tau}^2)$ and the condensates of the full V+A channel, $\langle O_4 \rangle$ and the effective D = 6 condensate $\langle O_6^{(\text{eff})} \rangle = a(\sigma_m)^{k_2} \langle O_6^{(2)} \rangle + a(\sigma_m)^{k_1} \langle O_6^{(1)} \rangle$, both in units of 10^{-3} GeV^6 .

method	$\alpha_s(m_{\tau}^2)$	$\langle O_4 angle$	$\langle \mathit{O}_6^{\mathrm{(eff)}} angle$	Nt	χ^2
FOPT	$0.3175\substack{+0.0109\\-0.0089}$	$-3.8^{+3.5}_{-5.6}$	$+2.4^{+1.8}_{-1.9}$	8	$1.4 imes10^{-3}$
PV	$0.3193^{+0.0043}_{-0.0091}$	-2.6 ± 0.9	$+2.4^{+1.7}_{-1.0}$	5	$0.9 imes10^{-3}$

1.) If we took, on the other hand, instead of the improved D = 6 contributions, the large- β_0 effective leading-order anomalous dimensions of the D = 6 operators $[\gamma^{(1)}(O_6^{(2)})/\beta_0 = -1, \gamma^{(1)}(O_6^{(1)}) = 0]$ (EPJC, 2022), leads to higher values $\alpha_s(m_\tau^2) = 0.3235^{+0.0138}_{-0.0126} [\alpha_s(M_Z^2) = 0.1191 \pm 0.0016]$. 2.) When D = 6 OPE terms are taken as nonrunning (i.e., $\gamma^{(1)}(O_D^{(1)}) = 0$), as we did in (EPJC, 2021), leads to the central value $\alpha_s(m_\tau^2) = 0.3164 [\alpha_s(M_Z^2) = 0.1182]$. We note that in our work (EPJC, 2021) we used the central value $d_4 = 338$. Table: The values of $\alpha_s(m_{\tau}^2)$, extracted by various groups applying sum rules and various methods to the ALEPH τ -decay data.

group	sum rule	FO	CI	PV	average
Baikov et al.,2008	$a^{(2,1)} = r_{\tau}$	0.322 ± 0.020	0.342 ± 0.011	_	0.332 ± 0.016
Beneke&Jamin, 2008	$a^{(2,1)} = r_{\tau}$	$0.320^{+0.012}_{-0.007}$	_	0.316 ± 0.006	0.318 ± 0.006
Caprini, 2020	$a^{(2,1)} = r_{\tau}$	—		0.314 ± 0.006	0.314 ± 0.006
Davier et al., 2013	a ^(i,j)	0.324	0.341 ± 0.008	_	0.332 ± 0.012
Pich&R.Sánchez, 2016	a ^(i,j)	0.320 ± 0.012	0.335 ± 0.013	_	0.328 ± 0.013
Boito et al., 2014	DV in $a^{(i,j)}$	0.296 ± 0.010	0.310 ± 0.014	_	0.303 ± 0.012
our work, 2021	BL (<i>O</i> ₆ , <i>O</i> ₈)	0.308 ± 0.007		$0.316^{+0.008}_{-0.006}$	0.312 ± 0.007
our work, 2022	BL $(O_6^{(1)}, O_6^{(2)})$	$0.323^{+0.013}_{-0.012}$		$0.327^{+0.027}_{-0.009}$	0.324 ± 0.013
		$0.321^{+0.021}_{-0.030}(\widetilde{\text{FO}})$			
this work	BL $(O_6^{(k_1)}, O_6^{(k_2)})$	$0.317^{+0.011}_{-0.009}$		$0.319^{+0.004}_{-0.009}$	$0.318^{+0.004}_{-0.009}$

$$d(Q^{2})_{D=0,\text{pt}} = d_{0}a(\kappa Q^{2}) + d_{1}(\kappa) a(\kappa Q^{2})^{2} + \ldots + d_{n}(\kappa) a(\kappa Q^{2})^{n+1} + \ldots,$$

$$d(Q^{2})_{D=0,\text{lpt}} = \widetilde{d}_{0}a(\kappa Q^{2}) + \widetilde{d}_{1}(\kappa) \widetilde{a}_{2}(\kappa Q^{2}) + \ldots + \widetilde{d}_{n}(\kappa) \widetilde{a}_{n+1}(\kappa Q^{2}) + \ldots.$$
(34)

$$\widetilde{a}_{n+1}(Q'^2) \equiv \frac{(-1)^n}{n!\beta_0^n} \left(\frac{d}{d\ln Q'^2}\right)^n a(Q'^2) \qquad (n=0,1,2,\ldots), (35a)$$
$$= a(Q'^2)^{n+1} + \sum_{m\geq 1} k_m(n+1) a(Q'^2)^{n+1+m}, \qquad (35b)$$

$$\Rightarrow a(Q'^{2})^{n+1} = \tilde{a}_{n+1}(Q^{2}) + \sum_{m \ge 1} \tilde{k}_{m}(n+1) \tilde{a}_{n+1+m}(Q'^{2}), \quad (36)$$

$$\Rightarrow \widetilde{d}_n(\kappa) = d_n(\kappa) + \sum_{s=1}^{n-1} \widetilde{k}_s(n+1-s) d_{n-s}(\kappa) (\widetilde{d}_0 = d_0 = 1). (37)$$

César Ayala, Gorazd Cvetič and Diego Teca (

The ansatz for general $\kappa \equiv \mu^2/Q^2$ ($\tilde{\kappa} \equiv \kappa \exp(\tilde{K})$):

$$\begin{aligned} \mathcal{B}[\widetilde{d}](u;\kappa) &= \\ &= \pi \left\{ \widetilde{d}_{2,1}^{\mathrm{IR}}(\widetilde{\kappa}) \left[\frac{1}{(2-u)} + \left(-\widetilde{d}_{2,0}^{\mathrm{IR}}(\widetilde{\kappa}) + \widetilde{d}_{2,-1}^{\mathrm{IR}}(\widetilde{\kappa})(2-u) \right) \ln \left(1 - \frac{u}{2} \right) \right] \\ &+ \frac{\widetilde{d}_{3,2}^{\mathrm{IR}}(\widetilde{\kappa})}{(3-u)^{\kappa_2}} + \frac{\widetilde{d}_{3,1}^{\mathrm{IR}}(\widetilde{\kappa})}{(3-u)^{\kappa_1}} + \frac{\widetilde{d}_{1,2}^{\mathrm{UV}}(\widetilde{\kappa})}{(1+u)^2} \right\} \\ &= \widetilde{d}_0 + \frac{\widetilde{d}_1(\kappa)}{1!\beta_0}u + \ldots + \frac{\widetilde{d}_n(\kappa)}{n!\beta_0^n}u^n + \ldots \end{aligned}$$

(38)

This generates $\widetilde{d}_n(\kappa)$, thus $d_n(\kappa)$, thus expansion of $\mathcal{B}[d](u)$ has the structure:

$$\frac{1}{\pi}\mathcal{B}[d](u) \equiv \frac{1}{\pi} \left[d_{0} + \frac{d_{1}(\kappa)}{1!\beta_{0}}u + \ldots + \frac{d_{n}(\kappa)}{n!\beta_{0}^{n}}u^{n} + \ldots \right] \\
= \left\{ \frac{d_{2,1}^{IR}(\tilde{\kappa})}{(2-u)^{1+\tilde{\gamma}_{2}}} \left[1 + \mathcal{E}_{1}^{(4)}(2-u) + \mathcal{E}_{2}^{(4)}(2-u)^{2} \right] + \mathcal{O}\left((2-u)^{-\tilde{\gamma}_{2}+2} \right) \right\} \\
\left\{ + \frac{d_{3,2}^{IR}(\tilde{\kappa})}{(3-u)^{\kappa_{2}+\tilde{\gamma}_{3}}} \left[1 + \mathcal{E}_{1}^{(6)}(3-u) + \mathcal{E}_{2}^{(6)}(3-u)^{2} \right] + \mathcal{O}\left((3-u)^{-\tilde{\gamma}_{3}-\kappa_{2}+3} \right) \right\} \\
+ \frac{d_{3,1}^{IR}(\tilde{\kappa})}{(3-u)^{\kappa_{1}+\tilde{\gamma}_{3}}} \left[1 + \widetilde{\mathcal{E}}_{1}^{(6)}(3-u) \right] + \mathcal{O}\left((3-u)^{-\tilde{\gamma}_{3}-\kappa_{1}+2} \right) \right\} \\
\left\{ + \frac{d_{1,2}^{UV}(\tilde{\kappa})}{(1+u)^{\tilde{\gamma}_{1}+1}} \left[1 + \mathcal{E}_{1}^{(-2)}(1+u) + \mathcal{E}_{2}^{(-2)}(1+u)^{2} \right] + \mathcal{O}\left((1+u)^{-\tilde{\gamma}_{1}+2} \right) \right\}$$
(39)

where
$$\widetilde{\gamma}_{p} = +p\beta_{1}/\beta_{0}^{2}$$
; $\overline{\gamma}_{p} = -p\beta_{1}/\beta_{0}^{2}$.

In the inverse Borel transform, Eq. (28), when neglecting the $\mathcal{O}(...)$ terms in the Borel transform Eq. (39), implies that a polynomial correction to the PV Borel integral is needed

$$\delta d(\sigma_{\mathrm{m}} e^{i\phi}; \kappa)_{D=0}^{[N_t]} = \sum_{n=0}^{N_t-1} (\delta d)_n(\kappa) a(\kappa \sigma_{\mathrm{m}} e^{i\phi})^{n+1}, \tag{40}$$

where

Table: The $\overline{\text{MS}}$ coefficients d_n and the correction polynomial coefficients δd_n (with $\kappa = 1$).

n:	0	1	2	3	4	5	6	7	8	9	10
d _n :	1	1.64	6.37	49.1	275.	3159.	$1.61 \cdot 10^4$	3.41 · 10 ⁵	3.78 · 10 ⁵	6.99 · 10 ⁷	-5.83 · 10 ⁸
(δd) _n :	-27.2	-45.9	-118.	-304.	-1016.	-3070.	$-1.24 \cdot 10^4$	$1.71 \cdot 10^{4}$	5.72 · 10 ⁴	1.28 · 10 ⁷	6.97 · 10 ⁶
								۰ 🗆	· <∄ • <	≅ ► < ≣ ►	≣ ∽৭০

Apendix C: \mathcal{F} function in $B_{\text{th}}(M^2, \sigma_{\text{m}})_{D=2k}$ $(k \geq 3)$

The function \mathcal{F} appearing in Eq. (??) in Borel-Laplace D = 2k part $(k \ge 3)$:

- -

$$\mathcal{F}(M^{2}/\sigma_{\rm m}) = \frac{2\pi^{2}k}{\sigma_{\rm m}^{k}} \langle O_{2k}^{(2)} \rangle \beta_{0} \left\{ \left[\left(1 - 2\frac{M^{2}}{\sigma_{\rm m}} + 2\left(\frac{M^{2}}{\sigma_{\rm m}}\right)^{2}\right) J_{k}\left(\frac{\sigma_{\rm m}}{M^{2}}\right) + 2\left(1 - \frac{M^{2}}{\sigma_{\rm m}}\right) J_{k-1}\left(\frac{\sigma_{\rm m}}{M^{2}}\right) + J_{k-2}\left(\frac{\sigma_{\rm m}}{M^{2}}\right) \right] + 2\left(\frac{M^{2}}{\sigma_{\rm m}}\right)^{2} \exp\left[-\frac{\sigma_{\rm m}}{M^{2}}\right] \frac{(-1)^{k}}{k} \right\}$$
(41)

where

$$J_{s}(A) \equiv \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \, \exp\left[Ae^{i\phi}\right] e^{-is\phi} i\phi. \tag{42}$$

Appendix D: Specific sum rules used

Weight functions $g(Q^2)$ used in the sum rules (5): The double-pinched Borel-Laplace transforms $B(M^2)$ where M^2 is a complex squared energy parameter:

$$g_{M^{2}}(Q^{2}) = \left(1 + \frac{Q^{2}}{\sigma_{m}}\right)^{2} \frac{1}{M^{2}} \exp\left(\frac{Q^{2}}{M^{2}}\right) \Rightarrow$$
(43a)
$$G_{M^{2}}(Q^{2}) = \left\{ \left[\left(1 + \frac{Q^{2}}{\sigma_{m}}\right)^{2} - 2\frac{M^{2}}{\sigma_{m}} \left(1 + \frac{Q^{2}}{\sigma_{m}}\right) + 2\left(\frac{M^{2}}{\sigma_{m}}\right)^{2} \right] \exp\left(\frac{Q^{2}}{M^{2}}\right) - 2\left(\frac{M^{2}}{\sigma_{m}}\right)^{2} \exp\left(-\frac{\sigma_{m}}{M^{2}}\right) \right\},$$
(43b)

Appendix D: Specific sum rules used

The two sides of the sum rule (5) are then written as

$$B_{\exp}(M^{2};\sigma_{\rm m}) = \frac{1}{M^{2}} \int_{0}^{\sigma_{\rm m}} d\sigma \, \left(1 - \frac{\sigma}{\sigma_{\rm m}}\right)^{2} \exp\left(-\frac{\sigma}{M^{2}}\right) \omega_{\exp}(\sigma), \quad (44)$$

$$B_{\rm th}(M^{2};\sigma_{\rm m}) = \left[\left(1 - 2\frac{M^{2}}{\sigma_{\rm m}} \right) + 2 \left(\frac{M^{2}}{\sigma_{\rm m}} \right)^{2} \left(1 - \exp\left(-\frac{\sigma_{\rm m}}{M^{2}}\right) \right) \right]$$

+
$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \left\{ \left[\left(1 + e^{i\phi} \right)^{2} - 2\frac{M^{2}}{\sigma_{\rm m}} \left(1 + e^{i\phi} \right) + 2 \left(\frac{M^{2}}{\sigma_{\rm m}} \right)^{2} \right] \exp\left(\frac{\sigma_{\rm m}}{M^{2}} e^{i\phi}\right) - 2 \left(\frac{M^{2}}{\sigma_{\rm m}} \right)^{2} \exp\left(-\frac{\sigma_{\rm m}}{M^{2}}\right) \right\} d\left(\sigma_{\rm m} e^{i\phi}\right)_{D=0}$$

+
$$B_{\rm th}(M^{2};\sigma_{\rm m})_{D=4} + \sum_{k \ge 3} B_{\rm th}(M^{2};\sigma_{\rm m})_{D=2k}.$$
(45)

César Ayala, Gorazd Cvetič and Diego Teca ($lpha_s$ from tau decays, 4 August 2022

The last terms here are the contributions of the dimension D = 2k condensates of the OPE of the Adler function (9)

$$B_{\rm th}(\boldsymbol{M}^{2};\sigma_{\rm m})_{D=4} = \frac{2\pi^{2}\langle \boldsymbol{O}_{4}\rangle}{(\boldsymbol{M}^{2})^{2}} \left(1 + 2\frac{\boldsymbol{M}^{2}}{\sigma_{\rm m}}\right), \tag{46a}$$

$$B_{\rm th}(\boldsymbol{M}^{2};\sigma_{\rm m})_{D=6} = \frac{3\pi}{\sigma_{\rm m}^{3}} \int_{-\pi}^{+\pi} d\phi$$

$$\times \left\{ \left[\left(1 + e^{i\phi}\right)^{2} - 2\frac{\boldsymbol{M}^{2}}{\sigma_{\rm m}} \left(1 + e^{i\phi}\right) + 2\left(\frac{\boldsymbol{M}^{2}}{\sigma_{\rm m}}\right)^{2} \right] \exp\left(\frac{\sigma_{\rm m}}{\boldsymbol{M}^{2}}e^{i\phi}\right) - 2\left(\frac{\boldsymbol{M}^{2}}{\sigma_{\rm m}}\right)^{2} \exp\left(-\frac{\sigma_{\rm m}}{\boldsymbol{M}^{2}}\right) \right\} \exp^{-i3\phi} \left[a(\sigma_{\rm m}e^{i\phi})^{k_{2}} \langle \boldsymbol{O}_{6}^{(2)} \rangle + a(\sigma_{\rm m}e^{i\phi})^{k_{1}} \langle \boldsymbol{O}_{6}^{(1)} \rangle \right]. \tag{46b}$$

On the other hand, one can use FESRs with (double-pinched) momenta $a^{(2,n)}$ which are associated with the following weight functions $g^{(2,n)}$ (n = 0, 1, ...):

$$g^{(2,n)}(Q^{2}) = \left(\frac{n+3}{n+1}\right) \frac{1}{\sigma_{m}} \left(1 + \frac{Q^{2}}{\sigma_{m}}\right)^{2} \sum_{k=0}^{n} (k+1)(-1)^{k} \left(\frac{Q^{2}}{\sigma_{m}}\right)^{k},$$
(47a)
$$G^{(2,n)}(Q^{2}) = \left(\frac{n+3}{n+1}\right) \frac{Q^{2}}{\sigma_{m}} \left[1 - \left(-\frac{Q^{2}}{\sigma_{m}}\right)^{n+1}\right] + \left[1 - \left(-\frac{Q^{2}}{\sigma_{m}}\right)^{n+3}\right].$$
(47b)

The two sides of the sum rule (5) of these FESR moments are then (we subtract unity for convenience)

$$a_{\exp}^{(2,n)}(\sigma_m) = \int_0^{\sigma_m} d\sigma \ g^{(2,n)}(-\sigma)\omega_{\exp}(\sigma) - 1, \qquad (48a)$$
$$a_{\rm th}^{(2,n)}(\sigma_m) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \ G^{(2,n)}(\sigma_m e^{i\phi}) \left[D_{\rm th}(\sigma_m e^{i\phi}) - 1 \right]. \quad (48b)$$

We consider the first two moments $a^{(2,0)}$ and $a^{(2,1)}$, up to D = 6 terms.