Determination of α_{s} value from tau decays with a renormalon-motivated approach

César Ayala, Gorazd Cvetič and Diego Teca (UTFSM, Valparaíso)

Talk presented by G.C.
[work in progress, continuation of our work 2112.01992 and EPJC 81 (2021) 930 (arxiv: 2105.00356) and EPJC 82 (2022) 362 (arxiv: 2112.01992)]

XVQCD, Stavanger, August 4, 2022

Introduction

- We use ALEPH data for the strangeless semihadronic tau decay in the sum rules.
- The weight functions in the sum rules are Borel-Laplace, as an additional filter we use the momenta $a^{(2,0)}$ and $a^{(2,1)}$.
- For the theoretical expression of the sum rules we will use an improved version of the truncated OPE.
(1) For $D=0$ part we use Adler function $d\left(Q^{2}\right)_{D=0}$ whose higher order expansion coefficients are predicted by the structure of the leading IR and UV renormalons.
(2) The $D=4$ term has the known structure $\sim 1 /\left(Q^{2}\right)^{2}$, while $D=6$ terms $\sim 1 /\left(Q^{2}\right)^{3}$ are supplemented by the required terms $\sim \alpha_{s}\left(Q^{2}\right)^{k_{j}} /\left(Q^{2}\right)^{3}$ reflected by the renormalon structure of the constructed Adler function extension; we truncate at $D=6$.

Introduction

- In the evaluation of the $D=0$ part of the sum rules we apply the (truncated) FOPT, and the Borel resummation with PV (with truncated correction polynomial).
- For each truncation index, we extract the value of α_{s} from the fit of the sum rules with doubly-pinched Borel-Laplace weight function.
- The best truncation index is inferred from consideration of the (doubly-pinched) FESRs momenta $a^{(2,0)}$ and $a^{(2,1)}$.
- The averaged extracted value of α_{s} will be presented.

Sum rules

The Adler function $\mathcal{D}\left(Q^{2}\right)$ is logarithmic derivative of the quark current polarisation function $\Pi\left(Q^{2}\right)$

$$
\begin{equation*}
\mathcal{D}\left(Q^{2}\right) \equiv-2 \pi^{2} \frac{d \Pi\left(Q^{2}\right)}{d \ln Q^{2}} \tag{1}
\end{equation*}
$$

where $Q^{2} \equiv-q^{2}\left(=-\left(q^{0}\right)^{2}+\vec{q}^{2}\right)$. We will consider the total
$(\mathrm{V}+\mathrm{A})$-channel, i.e., $\Pi\left(Q^{2}\right)$ will be the total $(\mathrm{V}+\mathrm{A})$-channel polarisation function

$$
\begin{equation*}
\Pi\left(Q^{2}\right)=\Pi_{\mathrm{V}}^{(1)}\left(Q^{2}\right)+\Pi_{\mathrm{A}}^{(1)}\left(Q^{2}\right)+\Pi_{\mathrm{A}}^{(0)}\left(Q^{2}\right) \tag{2}
\end{equation*}
$$

We neglect $\Pi_{\mathrm{V}}^{(0)}$ because $\operatorname{Im} \Pi_{\mathrm{V}}^{(0)}(-\sigma+i \epsilon) \propto\left(m_{d}-m_{u}\right)^{2}$ is negligible. According to the general principles of Quantum Field Theory, $\Pi\left(Q^{2} ; \mu^{2}\right)$ and $\mathcal{D}\left(Q^{2}\right)$ are holomorphic (i.e., analytic) functions of Q^{2} in the complex Q^{2}-plane with the excepcion of the real negative axis $\left(-\infty,-m_{\pi}^{2}\right)$. If $g\left(Q^{2}\right)$ is a (arbitrary) holomorphic function of Q^{2}, and we apply the Cauchy theorem to the integral $\oint d Q^{2} g\left(Q^{2}\right) \Pi\left(Q^{2} ; \mu^{2}\right)$ along a closed path in the complex Q^{2}-plane in Fig. 1, we obtain

Sum rules

Figure: The closed integration path $C_{1}+C_{2}$ for $\oint d Q^{2} g\left(Q^{2}\right) \Pi\left(Q^{2}\right)$. The radius of the circle C_{2} is $\left|Q^{2}\right|=\sigma_{\mathrm{m}}\left(=2.8 \mathrm{GeV}^{2}\right)$. On the path C_{1} we have $\varepsilon \rightarrow+0$.

Sum rules

$$
\begin{align*}
\oint_{C_{1}+C_{2}} d Q^{2} g\left(Q^{2}\right) \Pi\left(Q^{2}\right) & =0 \tag{3a}\\
\Rightarrow \int_{0}^{\sigma_{\mathrm{m}}} d \sigma g(-\sigma) \omega_{\exp }(\sigma) & =-i \pi \oint_{\left|Q^{2}\right|=\sigma_{\mathrm{m}}} d Q^{2} g\left(Q^{2}\right) \Pi_{\mathrm{th}}\left(Q^{2}\right) \tag{3b}
\end{align*}
$$

where $\omega(\sigma)$ is proportional to the discontinuity (spectral) function of the $(\mathrm{V}+\mathrm{A})$-channel polarisation function

$$
\begin{equation*}
\omega(\sigma) \equiv 2 \pi \operatorname{Im} \Pi\left(Q^{2}=-\sigma-i \epsilon\right) \tag{4}
\end{equation*}
$$

Sum rules

Integration by parts replaces the theoretical polarisation function in the sum rule (3b) by the Adler function (1)

$$
\begin{equation*}
\int_{0}^{\sigma_{\mathrm{m}}} d \sigma g(-\sigma) \omega_{\exp }(\sigma)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \phi \mathcal{D}_{\mathrm{th}}\left(\sigma_{\mathrm{m}} e^{i \phi}\right) G\left(\sigma_{\mathrm{m}} e^{i \phi}\right) \tag{5}
\end{equation*}
$$

where $\mathcal{D}_{\mathrm{th}}\left(Q^{2}\right)$ is given by the theoretical OPE expansion of the Adler function, and the (holomorphic) function G is an integral of g :

$$
\begin{equation*}
G\left(Q^{2}\right)=\int_{-\sigma_{\mathrm{m}}}^{Q^{2}} d Q^{\prime 2} g\left(Q^{\prime 2}\right) \tag{6}
\end{equation*}
$$

Sum rules

The quantity $\omega(\sigma)$ was measured to a high precision by ALEPH Collaboration, in semihadronic strangeless τ-decays, Fig. 2.

Figure: The spectral function $\omega(\sigma)$ for the $(\mathrm{V}+\mathrm{A})$-channel, as measured by ALEPH Collaboration. The extremely narrow pion peak contribution $2 \pi^{2} f_{\pi}^{2} \delta\left(\sigma-m_{\pi}^{2}\right)\left(f_{\pi}=0.1305 \mathrm{GeV}\right)$ has to be added to this. The last two bins have large uncertainties, so we exclude them, and this means that $\sigma_{\mathrm{m}}=2.80 \mathrm{GeV}^{2}$ in the sum rules.

Sum rules

The theoretical OPE expression of the polarisation function that is usually used in the literature has the following form:

$$
\begin{equation*}
\Pi_{\mathrm{th}}\left(Q^{2} ; \mu^{2}\right)=-\frac{1}{2 \pi^{2}} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)+\Pi\left(Q^{2}\right)_{D=0}+\sum_{k \geq 2} \frac{\left\langle O_{2 k}\right\rangle}{\left(Q^{2}\right)^{k}}(1+\mathcal{O}(a)) \tag{7}
\end{equation*}
$$

The corresponding Adler function (1) is then

$$
\begin{equation*}
\mathcal{D}_{\mathrm{th}}\left(Q^{2}\right) \equiv-2 \pi^{2} \frac{d \Pi_{\mathrm{th}}\left(Q^{2}\right)}{d \ln Q^{2}}=1+d\left(Q^{2}\right)_{D=0}+2 \pi^{2} \sum_{k \geq 2} \frac{k\left\langle O_{2 k}\right\rangle}{\left(Q^{2}\right)^{k}} \tag{8}
\end{equation*}
$$

Sum rules

However, the theoretically better motivated OPE expansion of the Adler function has the following form, based on a complicated RGE-dependence of the higher D operators:

$$
\begin{gather*}
\mathcal{D}_{\mathrm{th}}\left(Q^{2}\right) \equiv-2 \pi^{2} \frac{d \Pi_{\mathrm{th}}\left(Q^{2}\right)}{d \ln Q^{2}}=d\left(Q^{2}\right)_{D=0}+1+4 \pi^{2} \frac{\left\langle O_{4}\right\rangle}{\left(Q^{2}\right)^{2}} \\
+\frac{6 \pi^{2}}{\left(Q^{2}\right)^{3}}\left[\left\langle O_{6}^{(2)}\right\rangle a\left(Q^{2}\right)^{k^{(2)}}+\left\langle O_{6}^{(1)}\right\rangle a\left(Q^{2}\right)^{k^{(1)}}\right]+\ldots, \tag{9}
\end{gather*}
$$

which has two different condensates at $D=6$, with the approximate values where $k^{(2)}=\gamma^{(1)}\left(O_{6}^{(2)}\right) / \beta_{0} \approx 0.222\left(=1-\kappa_{2}\right)$ and $k^{(1)}=\gamma^{(1)}\left(O_{6}^{(1)}\right) / \beta_{0} \approx 0.625\left(=1-\kappa_{1}\right)$ (Boito, Hornung, Jamin (BHJ), 2015), where $\gamma^{(1)}\left(O_{6}^{(j)}\right)$ is the effective leading-order anomalous dimension of the operator $O_{6}^{(j)}$ (BHJ, 2015).

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

The perturbation expansion of $d\left(Q^{2}\right)_{D=0}$ in powers of $a\left(\mu^{2}\right) \equiv \alpha_{s}\left(\mu^{2}\right) / \pi$ is $d\left(Q^{2}\right)_{D=0, \mathrm{pt}}=d_{0} a\left(\kappa Q^{2}\right)+d_{1}(\kappa) a\left(\kappa Q^{2}\right)^{2}+\ldots+d_{n}(\kappa) a\left(\kappa Q^{2}\right)^{n+1}+\ldots$,
(where $d_{0}=1$), and the expansion of the Borel transform $\mathcal{B}[d](u ; \kappa)$ is

$$
\begin{equation*}
\mathcal{B}[d](u ; \kappa) \equiv d_{0}+\frac{d_{1}(\kappa)}{1!\beta_{0}} u+\ldots+\frac{d_{n}(\kappa)}{n!\beta_{0}^{n}} u^{n}+\ldots \tag{11}
\end{equation*}
$$

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

The behaviour of $\mathcal{B}[d](u ; \kappa)$ close to the renormalon IR singularities $u=2,3, \ldots$ is
$\mathcal{B}[d](u ; \kappa) \sim 1 /(2-u)^{1+2 \beta_{1} / \beta_{0}^{2}}, 1 /(2-u)^{2 \beta_{1} / \beta_{0}^{2}}, \ldots(p=2)$,
$\mathcal{B}[d](u ; \kappa) \sim 1 /(p-u)^{\kappa_{j}^{(p)}+p \beta_{1} / \beta_{0}^{2}}, 1 /(p-u)^{\kappa_{j}^{p}}-1+p \beta_{1} / \beta_{0}^{2}, \ldots(p=3,4, \ldots)$
(12b
Here, $\kappa_{j}^{(p)}=1-\gamma^{(1)}\left(O_{2 p}^{(j)}\right) / \beta_{0}$, where $\gamma^{(1)}\left(O_{2 p}^{(j)}\right)$ is the effective leading-order anomalous dimension of the $D=2 p$ dimensional OPE operator $O_{2 p}^{(j)}$ appearing in the OPE of the Adler function; $\beta_{0}=\left(11-2 N_{f} / 3\right) / 4$ and $\beta_{1}=(1 / 16)\left(102-38 N_{f} / 3\right)$ are the first two β-function coefficients appearing in the RGE

$$
\begin{equation*}
\frac{d a\left(Q^{2}\right)}{d \ln Q^{2}}=-\beta_{0} a\left(Q^{2}\right)^{2}-\beta_{1} a\left(Q^{2}\right)^{3}-\bar{\beta}_{2} a\left(Q^{2}\right)^{4}-\ldots \tag{13}
\end{equation*}
$$

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

This, and the requirement that the Q^{2}-dependence of the dimension $D=2 p$ terms of the corresponding OPE for Adler $\mathcal{D}\left(Q^{2}\right)$ is the same as that of the renormalon ambiguity of the inverse Borel transformation (Borel integral)

$$
\begin{equation*}
\delta \mathcal{D}\left(Q^{2}\right)_{p, \kappa_{j}^{(p)}} \sim \frac{1}{\beta_{0}} \operatorname{Im} \int_{+i \varepsilon}^{+\infty+i \varepsilon} d u \exp \left(-\frac{u}{\beta_{0} a\left(Q^{2}\right)}\right) 1 /(p-u)^{\kappa_{j}^{(p)}+p \beta_{1} / \beta_{0}^{2}} \tag{14}
\end{equation*}
$$

implies that the corresponding OPE terms are

$$
\begin{align*}
\mathcal{D}\left(Q^{2}\right)_{D=2 p, \kappa_{j}^{(p)}} & \sim \frac{1}{\left(Q^{2}\right)^{p}} a\left(Q^{2}\right)^{1-\kappa_{j}^{(p)}}[1+\mathcal{O}(a)] \\
& =\frac{1}{\left(Q^{2}\right)^{p}} a\left(Q^{2}\right)^{\gamma^{(1)}\left(O_{2 p}^{(j)}\right) / \beta_{0}}[1+\mathcal{O}(a)] \tag{15}
\end{align*}
$$

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

In addition, there are also UV renormalon poles at $u=-p=-1,-2, \ldots$

$$
\begin{equation*}
\mathcal{B}[d](u ; \kappa) \sim 1 /(p+u)^{2-p \beta_{1} / \beta_{0}^{2}}, 1 /(p+u)^{1-p \beta_{1} / \beta_{0}^{2}}, \ldots(p=1,2, \ldots) \tag{16}
\end{equation*}
$$

where we assumed for the effective leading-order anomalous dimensions the values of the large- β_{0} approximation.
If we, on the other hand, reorganise the expansion (10) of $d\left(Q^{2}\right)_{D=0}$ in powers of logarithmic derivatives

$$
\begin{equation*}
\widetilde{a}_{n+1}\left(Q^{2}\right) \equiv \frac{(-1)^{n}}{n!\beta_{0}^{n}}\left(\frac{d}{d \ln Q^{2}}\right)^{n} a\left(Q^{2}\right) \quad(n=0,1,2, \ldots) \tag{17}
\end{equation*}
$$

[note: $\widetilde{a}_{n+1}\left(Q^{2}\right)=a\left(Q^{2}\right)^{n+1}+\mathcal{O}\left(a^{n+2}\right)$] we obtain
$d\left(Q^{2}\right)_{D=0, \mathrm{lpt}}=\widetilde{d}_{0} a\left(\kappa Q^{2}\right)+\widetilde{d}_{1}(\kappa) \widetilde{a}_{2}\left(\kappa Q^{2}\right)+\ldots+\widetilde{d}_{n}(\kappa) \widetilde{a}_{n+1}\left(\kappa Q^{2}\right)+\ldots$.
By use of the ($\overline{\mathrm{MS}}$) RGE, we can relate the new coefficients \widetilde{d}_{n} with the original ones d_{n}, d_{n-1},

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

We now construct the Borel transform $\mathcal{B}[\widetilde{d}](u)$ [related to the original Borel transform $\mathcal{B}[d](u)$ of the Adler function (11) by $\left.d_{n} \mapsto \widetilde{d}_{n}\right]$

$$
\begin{equation*}
\mathcal{B}[\widetilde{d}](u ; \kappa) \equiv \widetilde{d}_{0}+\frac{\widetilde{d}_{1}(\kappa)}{1!\beta_{0}} u+\ldots+\frac{\widetilde{d}_{n}(\kappa)}{n!\beta_{0}^{n}} u^{n}+\ldots \tag{19}
\end{equation*}
$$

It turns out that this transform has the simple one-loop renormalisation scale dependence (in contrast to the original $\mathcal{B}[d](u)$)

$$
\begin{equation*}
\frac{d}{d \ln \kappa} \widetilde{d}_{n}(\kappa)=n \beta_{0} \widetilde{d}_{n-1}(\kappa) \quad \Rightarrow \quad \mathcal{B}[\widetilde{d}](u ; \kappa)=\kappa^{u} \mathcal{B}[\widetilde{d}](u) \tag{20}
\end{equation*}
$$

Therefore, we will take the structure of renormalon singularities with $\left.\beta_{1} \mapsto 0\right)$, i.e.,
$\mathcal{B}[\widetilde{d}](u ; \kappa) \sim 1 /(2-u)^{1}, 1 /(3-u)^{\kappa_{2}}, 1 /(3-u)^{\kappa_{1}}, \ldots ; 1 /(1+u)^{2}, 1 /(1+u)^{1}, \ldots$
where the powers $\kappa_{2}=0.778\left[=1-k_{2}=1-\gamma^{(1)}\left(O_{6}^{(2)}\right) / \beta_{0}\right]$ and $\kappa_{2}=0.375$ [$=1-k_{1}=1-\gamma^{(1)}\left(O_{6}^{(1)}\right) / \beta_{0}$] are obtained from BHJ (2015) [cf. Eq. (9)]. In addition, terms of " 0 " powers $\ln (1-u / 2), \ln (1-u / 3)$, etc, can appear a

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

It can be shown then that this will imply for $\mathcal{B}[d](u ; \kappa)$ the corresponding structures

$$
\begin{align*}
\mathcal{B}[d](u ; \kappa) & \sim \frac{1}{(2-u)^{1+2 \beta_{1} / \beta_{0}^{2}}}[1+\mathcal{O}(2-u)] \\
\mathcal{B}[d](u ; \kappa) & \sim \frac{1}{(3-u)^{\kappa_{2}+3 \beta_{1} / \beta_{0}^{2}}}[1+\mathcal{O}(3-u)] \\
\mathcal{B}[d](u ; \kappa) & \sim \frac{1}{(3-u)^{\kappa_{1}+3 \beta_{1} / \beta_{0}^{2}}}[1+\mathcal{O}(3-u)] \\
\mathcal{B}[d](u ; \kappa) & \sim \frac{1}{(1+u)^{2-1 \beta_{1} / \beta_{0}^{2}}}[1+\mathcal{O}(1+u)] \\
\mathcal{B}[d](u ; \kappa) & \sim \frac{1}{(1+u)^{1-1 \beta_{1} / \beta_{0}^{2}}}[1+\mathcal{O}(1+u)] \tag{22}
\end{align*}
$$

This is in agreement with the teoretical expectations Eqs. (12).

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

The ansatz made for $\mathcal{B}[\widetilde{d}](u)$ (with $\kappa=1$) in the $\overline{\mathrm{MS}}$ scheme includes the singularities at the locations $u=2,3$ and $u=-1$

$$
\begin{align*}
\mathcal{B}[\widetilde{d}](u)= & \exp (\widetilde{K} u) \pi\left\{\widetilde{d}_{2,1}^{\mathrm{IR}}\left[\frac{1}{(2-u)}+\widetilde{\alpha}(-1) \ln \left(1-\frac{u}{2}\right)\right]\right. \\
& \left.+\frac{\widetilde{d}_{3,2}^{\mathrm{IR}}}{(3-u)^{\kappa_{2}}}+\frac{\widetilde{d}_{3,1}^{\mathrm{IR}}}{(3-u)^{\kappa_{1}}}+\frac{\widetilde{d}_{1,2}^{\mathrm{UV}}}{(1+u)^{2}}\right\}, \tag{23}
\end{align*}
$$

where the value of the parameter $\widetilde{\alpha}$ in the $\overline{\mathrm{MS}}$ scheme is fixed, $\widetilde{\alpha}=-0.255$ (G.C.(2019, PRD)). The other five parameters (\widetilde{K} and the residues $\left.\widetilde{d}_{2,1}^{\mathrm{IR}}, \widetilde{d}_{3,2}^{\mathrm{IR}}, \widetilde{d}_{3,1}^{\mathrm{IR}}, \widetilde{d}_{1,2}^{\mathrm{UV}}\right)$ are determined by the knowledge of the first five coefficients d_{n} (and thus \widetilde{d}_{n}), $n=0,1,2,3,4$. We take as the central value of d_{4} the value $d_{4}=275$., obtained by ECH (Kataev,Starshenko(1995)). Other estimates are $d_{4}=277 \pm 51$ (Boito et al.(2018)); $d_{4}=283$ (Beneke, Jamin(2008)); $d_{4}=338.19$ from this type of model in the miniMOM scheme (G.C.(2019)). The variation from $d_{4}=275$. to $d_{4}=338.19$ we include by

$$
\begin{equation*}
d_{4}=275 . \pm 63 \tag{24}
\end{equation*}
$$

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

Table: The values of \widetilde{K} and of the renormalon residues $\widetilde{d}_{i, j}^{X}(X=I R, U V)$ for the five-parameter ansatz (23) in the $\overline{\mathrm{MS}}$ scheme, when d_{4} is taken according to Eq. (24).

d_{4}	\widetilde{K}	$\widetilde{d}_{2,1}^{\mathrm{IR}}$	$\widetilde{d}_{3,2}^{\mathrm{IR}}$	$\widetilde{d}_{3,1}^{\mathrm{IR}}$	$\widetilde{d}_{1,2}^{\mathrm{UV}}$
275.	0.16010	0.661852	2.04546	-0.68316	-0.0121699
$275 .-63$.	-0.33879	0.986155	6.75278	-2.74029	-0.011647
$275 .+63$.	0.5190	1.10826	-0.481538	-0.511642	-0.0117704

Renormalon-motivated Adler function $d\left(Q^{2}\right)_{D=0}$

Table: The $\overline{\mathrm{MS}}$ coefficients \widetilde{d}_{n} and d_{n} (with $\left.\kappa=1\right)(n \leq 10)$ for the case 275. [cf. Eq. (24)].

n	$d_{4}=275 .: \widetilde{d}_{n}$	d_{n}
0	1	1
1	1.63982	1.63982
2	3.45578	6.37101
3	26.3849	49.0757
4	-25.4181	275.
5	1859.36	3206.48
6	-19035.2	16901.6
7	421210.	358634.
8	-7.80444×10^{6}	621177.
9	1.82502×10^{8}	7.52194×10^{7}
10	-4.43137×10^{9}	-5.21168×10^{8}

Specific sum rules used

Weight functions $g\left(Q^{2}\right)$ used in the sum rules (5):
The double-pinched Borel-Laplace transforms $B\left(M^{2}\right)$ where M^{2} is a complex squared energy parameter:

$$
\begin{equation*}
g_{M^{2}}\left(Q^{2}\right)=\left(1+\frac{Q^{2}}{\sigma_{\mathrm{m}}}\right)^{2} \frac{1}{M^{2}} \exp \left(\frac{Q^{2}}{M^{2}}\right) \quad \Rightarrow \tag{25}
\end{equation*}
$$

On the other hand, one can use FESRs with (double-pinched) momenta $a^{(2, n)}$ which are associated with the following weight functions $g^{(2, n)}$ $(n=0,1, \ldots)$:

$$
\begin{equation*}
g^{(2, n)}\left(Q^{2}\right)=\left(\frac{n+3}{n+1}\right) \frac{1}{\sigma_{m}}\left(1+\frac{Q^{2}}{\sigma_{m}}\right)^{2} \sum_{k=0}^{n}(k+1)(-1)^{k}\left(\frac{Q^{2}}{\sigma_{m}}\right)^{k} \tag{26}
\end{equation*}
$$

Methods of evaluation of the $D=0$ contribution

1.) Fixed Order Perturbation Theory using powers (FO): The truncated power expansion $d\left(\sigma_{\mathrm{m}} e^{i \phi}\right)_{D=0, \mathrm{pt}}^{\left[N_{t}\right]}$ [cf. Eq. (10)]

$$
\begin{equation*}
d\left(\sigma_{\mathrm{m}} e^{i \phi}\right)_{D=0, \mathrm{pt}}^{\left[N_{t}\right]}=a\left(\sigma_{\mathrm{m}} e^{i \phi}\right)+\sum_{n=1}^{N_{t}-1} d_{n}(\kappa) a\left(\sigma_{\mathrm{m}} e^{i \phi}\right)^{n+1} \tag{27}
\end{equation*}
$$

which appears in the contour integrals in the sum rules, Eqs. (45) and (48b), is written as truncated Taylor expansion in powers of $a\left(\sigma_{\mathrm{m}}\right)$ up to (and including) $a\left(\sigma_{\mathrm{m}}\right)^{N_{t}}$.

Methods of evaluation of the $D=0$ contribution

3.) Inverse Borel Transformation with Principal Value (PV): The expression for the $D=0$ part of the Adler function in the contour integrals is written as

$$
\begin{align*}
& \left(d\left(\sigma_{\mathrm{m}} e^{i \phi}\right)_{D=0}\right)^{\left(\mathrm{PV},\left[N_{t}\right]\right)}= \\
& \quad \frac{1}{\beta_{0}} \frac{1}{2}\left(\int_{\mathcal{C}_{+}}+\int_{\mathcal{C}_{-}}\right) d u \exp \left[-\frac{u}{\beta_{0} a\left(\kappa \sigma_{\mathrm{m}} e^{i \phi}\right)}\right] \mathcal{B}[d](u ; \kappa)_{\mathrm{sing}} \\
& \quad+\delta d\left(\sigma_{\mathrm{m}} e^{i \phi} ; \kappa\right)_{D=0}^{\left[N_{t}\right]} \tag{28}
\end{align*}
$$

where $\mathcal{B}[d](u ; \kappa)_{\text {sing }}$ is the singular part of the Borel transform of $d\left(Q^{2}\right)_{D=0}$, the arithmetic average over the integration paths $\mathcal{C}_{ \pm}$gives the Principal Value, and $\delta d\left(\sigma_{\mathrm{m}} \mathrm{e}^{i \phi} ; \kappa\right)_{D=0}^{\left[N_{t}\right]}$ is the truncated series in powers of $a\left(\sigma_{\mathrm{m}} e^{i \phi}\right)$ which completes the power terms corresponding to the Inverse Borel Transform of the singular part; we refer for a more detailed explanation to (C.A., G.C., D.T. 2021, EPJC [Sec. IV.B there]).

Results of fitting

We use the $\mathrm{V}+\mathrm{A}$ channel of ALEPH , with $\sigma \leq \sigma_{\mathrm{m}}=2.8 \mathrm{GeV}^{2}$. The Borel-Laplace sum rules are applied in practice to the Real parts

$$
\begin{equation*}
\operatorname{Re} B_{\exp }\left(M^{2} ; \sigma_{\mathrm{m}}\right)=\operatorname{Re} B_{\mathrm{th}}\left(M^{2} ; \sigma_{\mathrm{m}}\right) \tag{29}
\end{equation*}
$$

where for the Borel-Laplace scale parameters M^{2} we take $M^{2}=\left|M^{2}\right| \exp (i \Psi)$, where $0 \leq \Psi<\pi / 2$. Specifically, we take $0.9 \mathrm{GeV}^{2} \leq\left|M^{2}\right| \leq 1.5 \mathrm{GeV}^{2}$, and $\Psi=0, \pi / 6, \pi / 4$.
We minimised the difference between the two quantities (29) by minimising, with respect to 4 parameters $\left(\alpha_{s},\left\langle O_{4}\right\rangle,\left\langle O_{4}{ }^{(1)}\right\rangle\right.$ and $\left.\left\langle O_{4}{ }^{(2)}\right\rangle\right)$ the sum of squares

$$
\begin{equation*}
\chi^{2}=\sum_{\alpha=0}^{n}\left(\frac{\operatorname{Re} B_{\mathrm{th}}\left(M_{\alpha}^{2} ; \sigma_{\mathrm{m}}\right)-\operatorname{Re} B_{\exp }\left(M^{2}{ }_{\alpha} ; \sigma_{\mathrm{m}}\right)}{\delta_{B}\left(M^{2}{ }_{\alpha}\right)}\right)^{2} \tag{30}
\end{equation*}
$$

where M_{α}^{2} is a set of 9 points along the chosen rays with $\Psi=0, \pi / 6, \pi / 4$ and $0.9 \mathrm{GeV}^{2} \leq|M|^{2} \leq 1.5 \mathrm{GeV}^{2}$. Further, $\delta_{B}\left(M^{2}{ }_{\alpha}\right)$ are the experimental standard deviations of $\operatorname{Re} B_{\exp }\left(M^{2}{ }_{\alpha} ; \sigma_{\mathrm{m}}\right)$. We usually get very small $\chi^{2} \lesssim 10^{-3}$.

Results of fitting

Figure: The values of $\operatorname{Re} B\left(M^{2} ; \sigma_{\mathrm{m}}\right)$ along the ray $M^{2}=|M|^{2}\left(M^{2} \mid \exp (i \psi)\right.$ with $\psi=\pi / 4$. The narrow grey band are the experimental predictions. The red dashed line is the result of the FOPT global fit with truncation index $N_{t}=8$.

Results of fitting and Conclusions

The extracted values for α_{s} are

$$
\begin{align*}
\alpha_{s}\left(m_{\tau}^{2}\right)^{(\mathrm{FO})}= & 0.3175 \pm 0.0023(\exp)_{+0.0089}^{-0.0007}(\kappa)_{+0.0050}^{-0.0081}\left(d_{4}\right)_{-0.0028}^{+0.0033}\left(N_{t}\right) \\
= & 0.3175_{-0.0089}^{+0.0109}\left(N_{t}=8_{-3}^{+2}\right) \\
\alpha_{s}\left(m_{\tau}^{2}\right)^{(\mathrm{PV})}= & 0.3193 \pm 0.0024(\exp)_{-0.0010}^{-0.0013}(\kappa)_{+0.0035}^{-0.0086}\left(d_{4}\right) \mp 0.0001\left(N_{t}\right) \\
& \mp 0.0003(\mathrm{amb})=0.3193_{-0.0091}^{+0.0043} \quad\left(N_{t}=5_{-1}^{+2}\right) \tag{31}
\end{align*}
$$

Experimental uncertaities were obtained by the method of Boito, Peris et al. (2011).
The central values were extracted for the truncation index $N_{t}=8,5$ for the methods FO, and PV, respectively. Renormalisation scale parameter κ varies around $\kappa=1$ in the interval: $1 / 2 \leq \kappa \leq 2$.

Results of fitting and Conclusions

The average of the two methods gives

$$
\begin{gather*}
\alpha_{s}\left(m_{\tau}^{2}\right)=0.3184_{-0.0091}^{+0.0044} \tag{32}\\
\Rightarrow \alpha_{s}\left(M_{Z}^{2}\right)=0.1185_{-0.0012}^{+0.0005} \tag{33}
\end{gather*}
$$

PDG 2022 gives for average of lattice groups: $\alpha_{s}\left(M_{Z}^{2}\right)=0.1182 \pm 0.0008$; and the average of the nonlattice groups: $\alpha_{s}\left(M_{Z}^{2}\right)=0.1176 \pm 0.0010$.

From(31) we see that the theoretical uncertainties due to the uncertainty of the value of d_{4} coefficient are the most important. They are larger than the experimental uncertainties. This indicates that in the considered process, the theory remains behind the experiment. Semihadronic τ-decays remain a challenge for perturbative QCD.

Thank you for your attention.

Appendix A: Further details of the results

Figure: The moment $a^{(2,0)}\left(\sigma_{\mathrm{m}}\right)(\mathrm{a})$ and $a^{(2,1)}\left(\sigma_{\mathrm{m}}\right)(\mathrm{b})$, as a function of the truncation index N_{t}, for FO and PV approaches. At each N_{t}, the corresponding values of the parameters α_{s} and $\left\langle O_{D}\right\rangle$ obtained from the Borel-Laplace fit were used. The light blue band represents the experimental values (based on the ALEPH data). The best stability under variation of N_{t} is for $N_{t}=8,5$, respectively.

Appendix A: Further details of the results

Table: The results for $\alpha_{s}\left(m_{\tau}^{2}\right)$ and the condensates of the full $\mathrm{V}+\mathrm{A}$ channel, $\left\langle O_{4}\right\rangle$ and the effective $D=6$ condensate $\left\langle O_{6}^{\text {(eff) })}\right\rangle=a\left(\sigma_{\mathrm{m}}\right)^{k_{2}}\left\langle O_{6}^{(2)}\right\rangle+a\left(\sigma_{\mathrm{m}}\right)^{k_{1}}\left\langle O_{6}^{(1)}\right\rangle$, both in units of $10^{-3} \mathrm{GeV}^{6}$.

method	$\alpha_{s}\left(m_{\tau}^{2}\right)$	$\left\langle O_{4}\right\rangle$	$\left\langle O_{6}^{(\text {eff })}\right\rangle$	N_{t}	χ^{2}
FOPT	$0.3175_{-0.0089}^{+0.0109}$	$-3.8_{-5.6}^{+3.5}$	$+2.4_{-1.9}^{+1.8}$	8	1.4×10^{-3}
PV	$0.3193_{-0.0091}^{+0.00043}$	-2.6 ± 0.9	$+2.4_{-1.0}^{+1.7}$	5	0.9×10^{-3}

Appendix A: Further details of the results

1.) If we took, on the other hand, instead of the improved $D=6$ contributions, the large- β_{0} effective leading-order anomalous dimensions of the $D=6$ operators $\left[\gamma^{(1)}\left(O_{6}^{(2)}\right) / \beta_{0}=-1, \gamma^{(1)}\left(O_{6}^{(1)}\right)=0\right]$ (EPJC, 2022), leads to higher values $\alpha_{s}\left(m_{\tau}^{2}\right)=0.3235_{-0.0126}^{+0.0138}\left[\alpha_{s}\left(M_{Z}^{2}\right)=0.1191 \pm 0.0016\right]$. 2.) When $D=6$ OPE terms are taken as nonrunning (i.e., $\gamma^{(1)}\left(O_{D}^{(1)}\right)=0$), as we did in (EPJC, 2021), leads to the central value $\alpha_{s}\left(m_{\tau}^{2}\right)=0.3164\left[\alpha_{s}\left(M_{Z}^{2}\right)=0.1182\right]$. We note that in our work (EPJC, 2021) we used the central value $d_{4}=338$.

Appendix A: Further details of the results

Table: The values of $\alpha_{s}\left(m_{\tau}^{2}\right)$, extracted by various groups applying sum rules and various methods to the ALEPH τ-decay data.

group	sum rule	FO	Cl	PV	average
Baikov et al.,2008	$a^{(2,1)}=r_{\tau}$	0.322 ± 0.020	0.342 ± 0.011	-	0.332 ± 0.016
Beneke\&Jamin, 2008	$a^{(2,1)}=r_{\tau}$	$0.320_{-0.007}^{+0.012}$	-	0.316 ± 0.006	0.318 ± 0.006
Caprini, 2020	$a^{(2,1)}=r_{\tau}$	-	-	0.314 ± 0.006	0.314 ± 0.006
Davier et al., 2013	$a^{(i, j)}$	0.324	0.341 ± 0.008	-	0.332 ± 0.012
Pich\&R.Sánchez, 2016	$a^{(i, j)}$	0.320 ± 0.012	0.335 ± 0.013	-	0.328 ± 0.013
Boito et al., 2014	DV in $a^{(i, j)}$	0.296 ± 0.010	0.310 ± 0.014	-	0.303 ± 0.012
our work, 2021	$\mathrm{BL}\left(O_{6}, O_{8}\right)$	0.308 ± 0.007		$0.316_{-0.006}^{+0.008}$	0.312 ± 0.007
our work, 2022	$\mathrm{BL}\left(O_{6}{ }^{(1)}, O_{6}{ }^{(2)}\right)$	$0.323_{-0.012}^{+0.013}$		$0.327_{-0.009}^{+0.027}$	0.324 ± 0.013
		$0.321_{-0.030}^{+0.021}(\widetilde{\mathrm{FO})}$			
this work	$\mathrm{BL}\left(O_{6}{ }^{\left(k_{1}\right)}, O_{6}{ }^{\left(k_{2}\right)}\right)$	$0.317_{-0.009}^{+0.011}$	$0.319_{-0.009}^{+0.004}$	$0.318_{-0.009}^{+0.004}$	

Appendix B: Borel of Adler function

$$
\begin{align*}
d\left(Q^{2}\right)_{D=0, \mathrm{pt}} & =d_{0} a\left(\kappa Q^{2}\right)+d_{1}(\kappa) a\left(\kappa Q^{2}\right)^{2}+\ldots+d_{n}(\kappa) a\left(\kappa Q^{2}\right)^{n+1}+\ldots, \\
d\left(Q^{2}\right)_{D=0, \mathrm{lpt}} & =\widetilde{d}_{0} a\left(\kappa Q^{2}\right)+\widetilde{d}_{1}(\kappa) \widetilde{a}_{2}\left(\kappa Q^{2}\right)+\ldots+\widetilde{d}_{n}(\kappa) \widetilde{a}_{n+1}\left(\kappa Q^{2}\right)+\ldots \tag{34}
\end{align*}
$$

$$
\begin{align*}
& \widetilde{a}_{n+1}\left(Q^{\prime 2}\right) \equiv \frac{(-1)^{n}}{n!\beta_{0}^{n}}\left(\frac{d}{d \ln Q^{\prime 2}}\right)^{n} a\left(Q^{\prime 2}\right) \quad(n=0,1,2, \ldots),(35 \mathrm{a}) \\
&=a\left(Q^{\prime 2}\right)^{n+1}+\sum_{m \geq 1} k_{m}(n+1) a\left(Q^{\prime 2}\right)^{n+1+m}, \tag{35b}\\
& \Rightarrow a\left(Q^{\prime 2}\right)^{n+1}=\widetilde{a}_{n+1}\left(Q^{2}\right)+\sum_{m \geq 1} \widetilde{k}_{m}(n+1) \widetilde{a}_{n+1+m}\left(Q^{\prime 2}\right), \tag{36}\\
& \Rightarrow \widetilde{d}_{n}(\kappa)=d_{n}(\kappa)+\sum_{s=1}^{n-1} \widetilde{k}_{s}(n+1-s) d_{n-s}(\kappa) \quad\left(\widetilde{d}_{0}=d_{0}=1\right) .(37)
\end{align*}
$$

Appendix B: Borel of Adler function

The ansatz for general $\kappa \equiv \mu^{2} / Q^{2}(\widetilde{\kappa} \equiv \kappa \exp (\widetilde{K}))$:

$$
\begin{align*}
& \mathcal{B}[\widetilde{d}](u ; \kappa)= \\
&= \pi\left\{\widetilde{d}_{2,1}^{\mathrm{IR}}(\widetilde{\kappa})\left[\frac{1}{(2-u)}+\left(-\widetilde{d}_{2,0}^{\mathrm{IR}}(\widetilde{\kappa})+\widetilde{d}_{2,-1}^{\mathrm{IR}}(\widetilde{\kappa})(2-u)\right) \ln \left(1-\frac{u}{2}\right)\right]\right. \\
&\left.\quad+\frac{\widetilde{d}_{3,2}^{\mathrm{IR}}(\widetilde{\kappa})}{(3-u)^{\kappa_{2}}}+\frac{\widetilde{d}_{3,1}^{\mathrm{IR}}(\widetilde{\kappa})}{(3-u)^{\kappa_{1}}}+\frac{\widetilde{d}_{1,2}^{\mathrm{UV}}(\widetilde{\kappa})}{(1+u)^{2}}\right\} \\
&= \widetilde{d}_{0}+\frac{\widetilde{d}_{1}(\kappa)}{1!\beta_{0}} u+\ldots+\frac{\widetilde{d}_{n}(\kappa)}{n!\beta_{0}^{n}} u^{n}+\ldots \tag{38}
\end{align*}
$$

Appendix B: Borel of Adler function

This generates $\widetilde{d}_{n}(\kappa)$, thus $d_{n}(\kappa)$, thus expansion of $\mathcal{B}[d](u)$ has the structure:

$$
\begin{aligned}
\frac{1}{\pi} \mathcal{B}[d] & (u) \equiv \frac{1}{\pi}\left[d_{0}+\frac{d_{1}(\kappa)}{1!\beta_{0}} u+\ldots+\frac{d_{n}(\kappa)}{n!\beta_{0}^{n}} u^{n}+\ldots\right] \\
= & \left\{\frac{d_{2,1}^{\mathrm{IR}}(\widetilde{\kappa})}{(2-u)^{1+\widetilde{\gamma}_{2}}}\left[1+\mathcal{E}_{1}^{(4)}(2-u)+\mathcal{E}_{2}^{(4)}(2-u)^{2}\right]+\mathcal{O}\left((2-u)^{-\widetilde{\gamma}_{2}+2}\right)\right\} \\
& \left\{+\frac{d_{3,2}^{\mathrm{IR}}(\widetilde{\kappa})}{(3-u)^{\kappa_{2}+\widetilde{\gamma}_{3}}}\left[1+\mathcal{E}_{1}^{(6)}(3-u)+\mathcal{E}_{2}^{(6)}(3-u)^{2}\right]+\mathcal{O}\left((3-u)^{-\widetilde{\gamma}_{3}-\kappa_{2}+3}\right)\right. \\
& \left.+\frac{d_{3,1}^{\mathrm{IR}}(\widetilde{\kappa})}{(3-u)^{\kappa_{1}+\widetilde{\gamma}_{3}}}\left[1+\widetilde{\mathcal{E}}_{1}^{(6)}(3-u)\right]+\mathcal{O}\left((3-u)^{-\widetilde{\gamma}_{3}-\kappa_{1}+2}\right)\right\} \\
& \left\{+\frac{d_{1,2}^{\mathrm{UV}}(\widetilde{\kappa})}{(1+u)^{\bar{\gamma}_{1}+1}}\left[1+\mathcal{E}_{1}^{(-2)}(1+u)+\mathcal{E}_{2}^{(-2)}(1+u)^{2}\right]+\mathcal{O}\left((1+u)^{-\bar{\gamma}_{1}+2}\right)\right\}
\end{aligned}
$$

where $\widetilde{\gamma}_{p}=+p \beta_{1} / \beta_{0}^{2} ; \bar{\gamma}_{p}=-p \beta_{1} / \beta_{0}^{2}$.

Appendix B: Borel of Adler function

In the inverse Borel transform, Eq. (28), when neglecting the $\mathcal{O}(\ldots)$ terms in the Borel transform Eq. (39), implies that a polynomial correction to the PV Borel integral is needed

$$
\begin{equation*}
\delta d\left(\sigma_{\mathrm{m}} e^{i \phi} ; \kappa\right)_{D=0}^{\left[N_{t}\right]}=\sum_{n=0}^{N_{t}-1}(\delta d)_{n}(\kappa) a\left(\kappa \sigma_{\mathrm{m}} e^{i \phi}\right)^{n+1} \tag{40}
\end{equation*}
$$

where

Table: The $\overline{\mathrm{MS}}$ coefficients d_{n} and the correction polynomial coefficients δd_{n} (with $\kappa=1$).
$\left.\begin{array}{r||c|c|c|c|c|c|c|c|c|c|c}n:|c| c|c| c|c| c|c| c\end{array}\right)$

Apendix C : \mathcal{F} function in $B_{\mathrm{th}}\left(M^{2}, \sigma_{\mathrm{m}}\right)_{D=2 \mathrm{k}}(k \geq 3)$

The function \mathcal{F} appearing in Eq. (??) in Borel-Laplace $D=2 k$ part $(k \geq 3)$:

$$
\begin{align*}
\mathcal{F}\left(M^{2} / \sigma_{\mathrm{m}}\right)= & \frac{2 \pi^{2} k}{\sigma_{\mathrm{m}}^{k}}\left\langle O_{2 k}^{(2)}\right\rangle \beta_{0}\left\{\left[\left(1-2 \frac{M^{2}}{\sigma_{\mathrm{m}}}+2\left(\frac{M^{2}}{\sigma_{\mathrm{m}}}\right)^{2}\right) J_{k}\left(\frac{\sigma_{\mathrm{m}}}{M^{2}}\right)\right.\right. \\
& \left.+2\left(1-\frac{M^{2}}{\sigma_{\mathrm{m}}}\right) J_{k-1}\left(\frac{\sigma_{\mathrm{m}}}{M^{2}}\right)+J_{k-2}\left(\frac{\sigma_{\mathrm{m}}}{M^{2}}\right)\right] \\
& \left.+2\left(\frac{M^{2}}{\sigma_{\mathrm{m}}}\right)^{2} \exp \left[-\frac{\sigma_{\mathrm{m}}}{M^{2}}\right] \frac{(-1)^{k}}{k}\right\} \tag{41}
\end{align*}
$$

where

$$
\begin{equation*}
J_{s}(A) \equiv \frac{1}{2 \pi} \int_{-\pi}^{+\pi} d \phi \exp \left[A e^{i \phi}\right] e^{-i s \phi} i \phi \tag{42}
\end{equation*}
$$

Appendix D: Specific sum rules used

Weight functions $g\left(Q^{2}\right)$ used in the sum rules (5):
The double-pinched Borel-Laplace transforms $B\left(M^{2}\right)$ where M^{2} is a complex squared energy parameter:

$$
\begin{align*}
g_{M^{2}}\left(Q^{2}\right)= & \left(1+\frac{Q^{2}}{\sigma_{\mathrm{m}}}\right)^{2} \frac{1}{M^{2}} \exp \left(\frac{Q^{2}}{M^{2}}\right) \Rightarrow \tag{43a}\\
G_{M^{2}}\left(Q^{2}\right)= & \left\{\left[\left(1+\frac{Q^{2}}{\sigma_{m}}\right)^{2}-2 \frac{M^{2}}{\sigma_{m}}\left(1+\frac{Q^{2}}{\sigma_{m}}\right)+2\left(\frac{M^{2}}{\sigma_{m}}\right)^{2}\right] \exp \left(\frac{Q^{2}}{M^{2}}\right)\right. \\
& \left.-2\left(\frac{M^{2}}{\sigma_{m}}\right)^{2} \exp \left(-\frac{\sigma_{m}}{M^{2}}\right)\right\}, \tag{43b}
\end{align*}
$$

Appendix D: Specific sum rules used

The two sides of the sum rule (5) are then written as

$$
\begin{align*}
& \quad B_{\exp }\left(M^{2} ; \sigma_{\mathrm{m}}\right)=\frac{1}{M^{2}} \int_{0}^{\sigma_{\mathrm{m}}} d \sigma\left(1-\frac{\sigma}{\sigma_{\mathrm{m}}}\right)^{2} \exp \left(-\frac{\sigma}{M^{2}}\right) \omega_{\exp }(\sigma) \tag{44}\\
& B_{\mathrm{th}}\left(M^{2} ; \sigma_{\mathrm{m}}\right)=\left[\left(1-2 \frac{M^{2}}{\sigma_{\mathrm{m}}}\right)+2\left(\frac{M^{2}}{\sigma_{\mathrm{m}}}\right)^{2}\left(1-\exp \left(-\frac{\sigma_{\mathrm{m}}}{M^{2}}\right)\right)\right] \\
& +\frac{1}{2 \pi} \int_{-\pi}^{+\pi} d \phi\left\{\left[\left(1+e^{i \phi}\right)^{2}-2 \frac{M^{2}}{\sigma_{\mathrm{m}}}\left(1+e^{i \phi}\right)+2\left(\frac{M^{2}}{\sigma_{\mathrm{m}}}\right)^{2}\right] \exp \left(\frac{\sigma_{\mathrm{m}}}{M^{2}} e^{i \phi}\right)\right. \\
& \left.-2\left(\frac{M^{2}}{\sigma_{\mathrm{m}}}\right)^{2} \exp \left(-\frac{\sigma_{\mathrm{m}}}{M^{2}}\right)\right\} d\left(\sigma_{\mathrm{m}} e^{i \phi}\right)_{D=0} \\
& \quad+B_{\mathrm{th}}\left(M^{2} ; \sigma_{\mathrm{m}}\right)_{D=4}+\sum_{k \geq 3} B_{\mathrm{th}}\left(M^{2} ; \sigma_{\mathrm{m}}\right)_{D=2 k} \tag{45}
\end{align*}
$$

Appendix D: Specific sum rules used

The last terms here are the contributions of the dimension $D=2 k$ condensates of the OPE of the Adler function (9)

$$
\begin{aligned}
& B_{\mathrm{th}}\left(M^{2} ; \sigma_{\mathrm{m}}\right)_{D=4}=\frac{2 \pi^{2}\left\langle O_{4}\right\rangle}{\left(M^{2}\right)^{2}}\left(1+2 \frac{M^{2}}{\sigma_{\mathrm{m}}}\right) \\
& B_{\mathrm{th}}\left(M^{2} ; \sigma_{\mathrm{m}}\right)_{D=6}=\frac{3 \pi}{\sigma_{\mathrm{m}}^{3}} \int_{-\pi}^{+\pi} d \phi \\
& \quad \times\left\{\left[\left(1+e^{i \phi}\right)^{2}-2 \frac{M^{2}}{\sigma_{\mathrm{m}}}\left(1+e^{i \phi}\right)+2\left(\frac{M^{2}}{\sigma_{\mathrm{m}}}\right)^{2}\right] \exp \left(\frac{\sigma_{\mathrm{m}}}{M^{2}} e^{i \phi}\right)\right. \\
& \left.-2\left(\frac{M^{2}}{\sigma_{\mathrm{m}}}\right)^{2} \exp \left(-\frac{\sigma_{\mathrm{m}}}{M^{2}}\right)\right\} \exp ^{-i 3 \phi}\left[a\left(\sigma_{\mathrm{m}} e^{i \phi}\right)^{k_{2}}\left\langle O_{6}^{(2)}\right\rangle+a\left(\sigma_{\mathrm{m}} e^{i \phi}\right)^{k_{1}}\left\langle O_{6}^{(1)}\right\rangle\right]
\end{aligned}
$$

Appendix D: Specific sum rules used

On the other hand, one can use FESRs with (double-pinched) momenta $a^{(2, n)}$ which are associated with the following weight functions $g^{(2, n)}$ $(n=0,1, \ldots)$:

$$
g^{(2, n)}\left(Q^{2}\right)=\left(\frac{n+3}{n+1}\right) \frac{1}{\sigma_{m}}\left(1+\frac{Q^{2}}{\sigma_{m}}\right)^{2} \sum_{k=0}^{n}(k+1)(-1)^{k}\left(\frac{Q^{2}}{\sigma_{m}}\right)^{k}
$$

(47a)
$G^{(2, n)}\left(Q^{2}\right)=\left(\frac{n+3}{n+1}\right) \frac{Q^{2}}{\sigma_{m}}\left[1-\left(-\frac{Q^{2}}{\sigma_{m}}\right)^{n+1}\right]+\left[1-\left(-\frac{Q^{2}}{\sigma_{m}}\right)^{n+3}\right]$.
(47b)

Appendix D: Specific sum rules used

The two sides of the sum rule (5) of these FESR moments are then (we subtract unity for convenience)

$$
\begin{align*}
a_{\exp }^{(2, n)}\left(\sigma_{m}\right) & =\int_{0}^{\sigma_{m}} d \sigma g^{(2, n)}(-\sigma) \omega_{\exp }(\sigma)-1 \tag{48a}\\
a_{\mathrm{th}}^{(2, n)}\left(\sigma_{m}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \phi G^{(2, n)}\left(\sigma_{m} e^{i \phi}\right)\left[D_{\mathrm{th}}\left(\sigma_{m} e^{i \phi}\right)-1\right] \tag{48b}
\end{align*}
$$

We consider the first two moments $a^{(2,0)}$ and $a^{(2,1)}$, up to $D=6$ terms.

