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Introduction

@ We use ALEPH data for the strangeless semihadronic tau decay in the
sum rules.

@ The weight functions in the sum rules are Borel-Laplace, as an
additional filter we use the momenta a(29) and a(21).

@ For the theoretical expression of the sum rules we will use an
improved version of the truncated OPE.

@ For D = 0 part we use Adler function d(Q?)p—o whose higher order
expansion coefficients are predicted by the structure of the leading IR
and UV renormalons.

@ The D = 4 term has the known structure ~ 1/(Q?)?, while D =6
terms ~ 1/(Q?)3 are supplemented by the required terms
~ as(Q%)% /(Q?)? reflected by the renormalon structure of the
constructed Adler function extension; we truncate at D = 6.
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Introduction

@ In the evaluation of the D = 0 part of the sum rules we apply the
(truncated) FOPT, and the Borel resummation with PV (with
truncated correction polynomial).

@ For each truncation index, we extract the value of as from the fit of
the sum rules with doubly-pinched Borel-Laplace weight function.

@ The best truncation index is inferred from consideration of the
(doubly-pinched) FESRs momenta a(>9) and a(>1).

@ The averaged extracted value of ag will be presented.
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Sum rules

The Adler function D(Q?) is logarithmic derivative of the quark current
polarisation function M(Q?)

22:'(%2)7 (1)

where Q% = —q¢? (= —(q°)? + G?). We will consider the total
(V+A)-channel, i.e., M(Q?) will be the total (V+A)-channel polarisation
function

D(Q%) =~

N(@2) = NP(Q%) + nP(@%) + N (Q?). 2)

We neglect I'I$) because Imﬂgg))(—a +i€) oc (mg — my)? is negligible.
According to the general principles of Quantum Field Theory, M(Q?; u?)
and D(Q?) are holomorphic (i.e., analytic) functions of Q2 in the complex
Q?-plane with the excepcion of the real negative axis (—oo, —m2). If

g(Q?) is a (arbitrary) holomorphic function of @2, and we apply the
Cauchy theorem to the integral § dQ%g(Q?)MN(Q?; u?) along a closed path
in the complex @Q2-plane in Fig. 1, we obtain
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Sum rules
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Figure: The closed integration path Ci + G, for § dQ°g(
2.8 GeV?). On the path G we have ¢ — +0.

circle G is |@% = om (=

Q*)N(Q?). The radius of the
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Sum rules

f dQ%e(QA)N(Q?) = 0 (3a)
G+G
ma—awexaz—iﬂ 2 2t 2
+ [ dog(-oY(o) AR CRUCE!
(3b)

where w(o) is proportional to the discontinuity (spectral) function of the
(V+A)-channel polarisation function

w(o) =27 Im N(Q? = —0 — ie) . (4)
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Sum rules

Integration by parts replaces the theoretical polarisation function in the
sum rule (3b) by the Adler function (1)

/Um dog(—0)wexp(0) = : /ﬂ d¢ Dth(Umei¢)G(Umei¢)’ (5)
0

2 J_.
where Dy, (Q?) is given by the theoretical OPE expansion of the Adler
function, and the (holomorphic) function G is an integral of g:

2

G(Q?) = / 1Q%(Q?). (6)
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Sum rules

The quantity w(o) was measured to a high precision by ALEPH
Collaboration, in semihadronic strangeless T-decays, Fig. 2.
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FIgU I€. The spectral function w(c) for the (V+A)-channel, as measured by ALEPH Collaboration. The extremely narrow

pion peak contribution 272 f,f,é(u - mf‘,) (fr = 0.1305 GeV) has to be added to this. The last two bins have large
uncertainties, so we exclude them, and this means that oy, = 2.80 GCV2 in the sum rules.
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Sum rules

The theoretical OPE expression of the polarisation function that is usually
used in the literature has the following form:

2 2y 1 Q? 2) (O2k)
Nin(Q%4%) = —5 5 In <u >+H(Q - +; () (1+0(a)). (7)

The corresponding Adler function (1) is then

Din(Q?) = -2 2% 1+d(02)o_o+2w2zlz<(?()23kk>. (8)
k>2
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Sum rules

However, the theoretically better motivated OPE expansion of the Adler
function has the following form, based on a complicated RGE-dependence
of the higher D operators:

dMi, ( Q2 (O4)
Dth(Q2) = _27720,;2(622) = d(Qz)D:O + 1+ 471'2(024)2
672 5 .
gy [(Oa(@) 4 (O ha @)+

which has two different condensates at D = 6, with the approximate
values where k(?) = 7(1)(Oé2))/ﬁo ~ 0.222 (=1 — ko) and

kD) = ~W(0M) /By ~ 0.625 (= 1 — 1) (Boito, Hornung, Jamin (BHJ),
2015), where ’y(l)(Oéj)) is the effective leading-order anomalous dimension
of the operator Oéj) (BHJ, 2015).
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Renormalon-motivated Adler function d(Q?)p—g

The perturbation expansion of d(Q?)p—g in powers of a(u?) = as(u?)/7 is

d(Q?)p—o.pt = doa(kQ?) + di(k) a(KQ2)? + ...+ dn(k) a(kQ?)™ 1+ ...,
(10)

(where dy = 1), and the expansion of the Borel transform B[d](u; x) is

Bld)(u; k) = d0+0f,(ﬁ) F.. ‘i’"!fg’zn)uu.... (11)
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Renormalon-motivated Adler function d(Q?)p—g

The behaviour of B[d](u; k) close to the renormalon IR singularities
u=23,...1is

Bldl(uir) ~ 1/(2— u)"28/% 1) — u)2B/% . (p=2), (122
Bldl(uik) ~ 1/(p—u)s PRIB 1)(p— u) PBIR (p =34
(12k

Here, nj(.p) =1- fy(l)(OgJ))/Bo, where fy(l)(OgJ)) is the effective
leading-order anomalous dimension of the D = 2p dimensional OPE

operator Og’) appearing in the OPE of the Adler function;
Bo = (11 —2N¢/3)/4 and 1 = (1/16)(102 — 38N¢/3) are the first two
B-function coefficients appearing in the RGE

da(Q%)
dIn Q2

= —Boa(Q%)? — B1a(Q?)® — Bra(Q)* — ... (13)
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Renormalon-motivated Adler function d(Q?)p—g

This, and the requirement that the Qz—dependence of the dimension

D = 2p terms of the corresponding OPE for Adler D(Q?) is the same as
that of the renormalon ambiguity of the inverse Borel transformation
(Borel integral)

1 +OO+I€ u (P) >
D(Q? ~ —1 d <_> 1/(p — u)s +PA/BE
( )P7KJ(‘ 50 m tie uexp 503(02) /(p U) J
(14)
implies that the corresponding OPE terms are
D(Q?) 3@ 1+ 0(a)]
D= 2p/@ (p) (QQ)p
1 2 ~(1) O(J) B
= @@ nroE. ()
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Renormalon-motivated Adler function d(Q?)p—g

In addition, there are also UV renormalon poles at u = —p=—1,-2,...
Bld)(u;k) ~ 1/(p+u)>PH/% 1/(p+u)'=PP/% L (p=1,2,..),
(16)

where we assumed for the effective leading-order anomalous dimensions
the values of the large-5p approximation.

If we, on the other hand, reorganise the expansion (10) of d(Q?)p—o in
powers of logarithmic derivatives

52 (QF) = (;2) <dI:QZ) A(@D)  (n=012..),  (17)

[note: 3,41(Q%) = a(@?)"*! + O(a"*?)] we obtain

d(Q%)p—o1pt = doa(kQ?) + di(r) 32(KQ?) + ...+ dn(k) 3ns1(KQ?) +.. ..
(18)

By use of the (MS) RGE, we can relate the new coefficients dn with the
original ones d,,,d,_1,.. ..
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Renormalon-motivated Adler function d(Q?)p—g

We now construct the Borel transform B[d](u) [related to the original
Borel transform B[d](u) of the Adler function (11) by d, — d,]

d dp
), ),

1150 nl,B"

It turns out that this transform has the simple one-loop renormalisation

scale dependence (in contrast to the original B[d](u))

Bld](u; k) = do + S (19)

T d()_nﬂog,,_l(n) = Bld|(u; k) = k“B[d](uv). (20)

Therefore, we will take the structure of renormalon singularities with

ﬂl — 0), ie

Bld](u; k) ~ 1/(2—u)*, 1/(3—u)"2,1/(3—u)™,...;1/(1+u)? 1/(1+u)?,
(21)

where the powers k; = 0778 [=1—ky =1 — 7(1)(06(2))/60] and kp = 0.375

[=1—k =1—~M(0")/Bo] are obtained from BHJ (2015) [cf. Eq. (9)].

In addition, terms of “0" powers In(1 — u/2),In(1 — u/3), etc. can appear,
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Renormalon-motivated Adler function d(Q?)p—g

It can be shown then that this will imply for B[d]|(u; k) the corresponding
structures

Bld)(u: k) ~ M[Hoe—u)],

Bld)(u: k) ~ (3_u):2+3ﬁ1 106w,

Bld)(ui k) ~ (3_u):1+3ﬁ1/53 [1+0G-u),

Bld|(u;r) ~ M[l+(9(l+u)},
1

Bld|(u; k) ~ +O(1 + u)]. (22)

(1 + u)t—15/5 1

This is in agreement with the teoretical expectations Egs. (12).
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Renormalon-motivated Adler function d(Q?)p—g

The ansatz made for B[d](u) (with x = 1) in the MS scheme includes the

singularities at the locations u =2,3 and u = —1
- _ 1 B
Bld(u) = exp (Ku) W{Efg}} {@_L’) +a(~1)In (1 - ‘2’)}
1% dit dyy
9 3 3 23
TG T B +(1+u)2}’ (23)
where the value of the parameter & in the MS scheme is fixed, & = —0.255

(G.C.(2019, PRD)). The other five parameters (K and the residues

i}, di%, di%, d’Y') are determined by the knowledge of the first five coefficients
d, (and thus Jn) n=0,1,2,3,4. We take as the central value of dj the value
dy = 275., obtained by ECH (Kataev,Starshenko(1995)). Other estimates are

dy = 277 + 51 (Boito et al.(2018)); ds = 283 (Beneke, Jamin(2008));

ds = 338.19 from this type of model in the miniMOM scheme (G.C.(2019)). The
variation from d; = 275. to d; = 338.19 we include by

ds = 275. + 63. (24)
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Renormalon-motivated Adler function d(Q?)p—g

Table: The values of K and of the renormalon residues c7,>§ (X=IR,UV) for the
five-parameter ansatz (23) in the MS scheme, when dj is taken according to Eq. (24).

ds K

JIR JIR
dyy d3,2

JIR
d3q

JUV
di o

275. | 0.16010
275. - 63. | -0.33879
275. + 63. 0.5190

César Ayala, Gorazd Cveti¢ and Diego Teca (

0.661852 2.04546
0.986155 6.75278
1.10826 -0.481538

-0.68316 -0.0121699
-2.74029  -0.011647
-0.511642 -0.0117704
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Renormalon-motivated Adler function d(Q?)p—g

Table: The MS coefficients d, and d, (with £ = 1) (n < 10) for the case 275.
[cf. Eq. (24)].

n dy = 275.: J,, d,
0 1 1
1 1.63982 1.63982
2 3.45578 6.37101
3 26.3849 49.0757
4 -25.4181 275.
5 1859.36 3206.48
6 -19035.2 16901.6
7 421210. 358634.
8 | —7.80444 x 10° 621177.
9| 1.82502 x 108  7.52194 x 107
10 | —4.43137 x 10° —5.21168 x- 108
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Specific sum rules used

Weight functions g(Q?) used in the sum rules (5):
The double-pinched Borel-Laplace transforms B(M?) where M? is a
complex squared energy parameter:

p@ = (+E) Len(Z) = e

On the other hand, one can use FESRs with (double-pinched) momenta

a(2m) which are associated with the following weight functions g(%"
(n=0,1,...):

@) = () L (1 @) Sy (Qz) (26)

Om
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Methods of evaluation of the D = 0 contribution

1.) Fixed Order Perturbation Theory using powers (FO): The truncated

power expansion d(ame"‘z’)[DN;]0 ot [cf. Eq. (10)]

Nt—].
d(0me®) P, = a(ome™ Zd ei®)ntl, (27)

which appears in the contour integrals in the sum rules, Egs. (45) and

(48b), is written as truncated Taylor expansion in powers of a(oy,) up to
(and including) a(om)Me.
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Methods of evaluation of the D = 0 contribution

3.) Inverse Borel Transformation with Principal Value (PV): The

expression for the D = 0 part of the Adler function in the contour integrals
is written as

, (PV.[N:])
<d(amef¢)[,_o) _

5 (L) oo |~y | B

+5d(ame’¢; H)[EI)V;]O’ (28)
where B[d](u; k)sing is the singular part of the Borel transform of
d(Q?)p—o, the arithmetic average over the integration paths C.. gives the
Principal Value, and §d(oye'?; m)%v;]o is the truncated series in powers of
a(ome’®) which completes the power terms corresponding to the Inverse
Borel Transform of the singular part; we refer for a more detailed
explanation to (C.A., G.C., D.T. 2021, EPJC [Sec. IV.B there]).
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Results of fitting

We use the V+A channel of ALEPH, with ¢ < o, = 2.8 GeVZ2. The
Borel-Laplace sum rules are applied in practice to the Real parts

ReBexp(M?; o) = ReBin(M?; o), (29)

where for the Borel-Laplace scale parameters M? we take

M? = |M?| exp(iV), where 0 < W < 7/2. Specifically, we take

0.9 GeV2 < |M?| < 1.5 GeV?, and ¥ = 0,7/6, /4.

We minimised the difference between the two quantities (29) by
minimising, with respect to 4 parameters (a5, (O4), (04(1)) and (0,4(2)))
the sum of squares

2o Z ReBn(Ma; 01n) — ReBexp(M2ai owm) |
08(M24) ’

(30)

a=0
where M2 is a set of 9 points along the chosen rays with W = 0,7/6, /4
and 0.9 GeV? < [M|? < 1.5 GeV2. Further, §g(M?,) are the
experimental standard deviations of ReBexp(M?4; 01m). We usually get
very small x? <1073,
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Results of fitting

070} il 1
L C y=— ,
(©) .
— as(m?) = 0.3175
0.65+ i
—~ dy = 275.
s |
Q060 ]
2 I
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FIgU re: The values of ReB(M?; o) along the ray M? = |M?| exp(i¥) with W = 7 /4. The narrow grey band are the
experimental predictions. The red dashed line is the result of the FOPT global fit with truncation index-N; = 8.
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Results of fitting and Conclusions

The extracted values for o are

as(m?)FO) = 0.3175 £ 0.0023(exp) ;0 0086 (%) -0 9050 (d4) 10 0023 (Ne)
= 0.31751 %% (N, = 812),
as(m2)PY) = 0.3193 + 0.0024(exp) Z§ 0015 () ;00032 (cla) F 0.0001(N;)
+0.0003(amb) = 0.319319-5033 (N, = 573). (31)

Experimental uncertaities were obtained by the method of Boito, Peris et
al. (2011).

The central values were extracted for the truncation index N; = 8,5 for
the methods FO, and PV, respectively. Renormalisation scale parameter
varies around x = 1 in the interval: 1/2 < x < 2.

César Ayala, Gorazd Cveti¢ and Diego Teca ( s from tau decays, 4 August 2022 support Ukraine 25 /40



Results of fitting and Conclusions

The average of the two methods gives
s(m2) = 0.31849%08 (32)

= as(M3) = 0.1185"5:99%5. (33)

PDG 2022 gives for average of lattice groups: as(M2) = 0.1182 % 0.0008;
and the average of the nonlattice groups: as(M2) = 0.1176 & 0.0010.

From(31) we see that the theoretical uncertainties due to the uncertainty
of the value of d; coefficient are the most important. They are larger than
the experimental uncertainties. This indicates that in the considered
process, the theory remains behind the experiment. Semihadronic T-decays
remain a challenge for perturbative QCD.

Thank you for your attention.
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Appendix A: Further details of the results

4 4=25. [ 0

0.244F P

0.2421

0.240

02381

02101

0.208F

0.206

0204

&) 4= () ~+F0

PV
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Flgu €. The moment a(z'm(om) (a) and 3(2’1)(0,1]) (b), as a function of the truncation index N¢, for FO and PV
approaches. At each N, the corresponding values of the parameters ag and (Op) obtained from the Borel-Laplace fit were
used. The light blue band represents the experimental values (based on the ALEPH data). The best stability under variation of

N; is for Ny = 8, 5, respectively.
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Appendix A: Further details of the results

Table: The results for as(m?) and the condensates of the full V+A channel, (Os) and

the effective D = 6 condensate <Oéeﬂ)) :a(am)k2(Oéz))+a(am)k1<0él)), both in units of
1073 GeV®.

method | as(m?) (0s)  (OF™y | N, | %
FOPT | 0.31757000%0  —3.8722 +24775 | 8] 14x1073
PV | 0.31937980% _26+0.9 424710 | 5]09x1073
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Appendix A: Further details of the results

1.) If we took, on the other hand, instead of the improved D = 6
contributions, the large-3y effective leading-order anomalous dimensions of
the D = 6 operators [y(1(0{?)/fo=—1, 7D (OM) = 0] (EPJC, 2022),
leads to higher values as(m?)=0.3235"09138 [as(M2)=0.1191+0.0016).
2.) When D = 6 OPE terms are taken as nonrunning (i.e.,

'7(1)(0(D1)) = 0), as we did in (EPJC, 2021), leads to the central value
as(m?) = 0.3164 [as(M2) = 0.1182]. We note that in our work (EPJC,
2021) we used the central value ds = 338.
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Appendix A: Further details of the results

Table: The values of as(m?), extracted by various groups applying sum rules and
various methods to the ALEPH 7-decay data.

group sum rule FO Cl PV average
Baikov et al.,2008 a@h =, 0.322+£0.020  0.342+0.011 — 0.332+0.016
Beneke&Jamin, 2008 | a®1) = r 0.32013:922 — 0.316 £ 0.006 | 0.318 = 0.006
Caprini, 2020 a2 =, — — 0.314 £ 0.006 | 0.314 + 0.006
Davier et al., 2013 ali) 0.324 0.341+0.008 — 0.332 +0.012
Pich&R Sénchez, 2016 | a(i¥) 0.320+£0.012  0.335+0.013 — 0.328 +0.013
Boito et al., 2014 DV in a(i¥) 0.206+0.010  0.310+0.014 — 0.303 +0.012
our work, 2021 BL (O, Os) 0.308 + 0.007 0.316739%¢ | 0.312+0.007
our work, 2022 BL (06, 06®) | 032375553 0.32773%s0 | 0.324£0.013
0.321°0%21(FO)
this work BL (067, 0s%)) | 031775555 0.31973%% | 031875055
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Appendix B: Borel of Adler function

d(@)p—op: = doa(k@)+di(k) a(kQ@?)+ ... +dn(k) a(kQ>)" 1+ ...,
d(Q¥)p—oipt = doa(kQ?)+di(k) 32(kQ)+ ... +dn(k) Fns1(KQ)+ . ...

(34)
e (D d N\
anr1(Q?) = n'ﬁ(’)’ (dInQ'2> a(Q?) (n=0,1,2,...),(35a)
= n+1 + Z km(n + 1) 2)n+1+m’ (35b)
m>1
= a(QI2)n+1 = 5n+1(Q2)+ ng(n"{'l) 5n+1+m(c\),2)a (36)
m>1

= do(k) = d,,(,{)+i”/25(n+1—s) dn_s(k) (do=dp=1).(37)
s=1
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Appendix B: Borel of Adler function

The ansatz for general k = 12/ Q? (k = rexp(K)):
Bld](u; r) =
~ 1 ~ ~ u
= n{&}l}(n) [(2—u) + (—CA/;RO R)+ (ER_l(/@)Q — u)) In (1 — 5) }
F) | dIE) | )
G-ue  G-ur 1+ 7l
~  di(k)

_ d"(K‘) n
= nigg "

1!50 u—+...+

+...
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Appendix B: Borel of Adler function

This generates dp(k), thus d,(k), thus expansion of B[d](u) has the
structure:

%B[d](u) _ ! [d0+ Cil!(fz,)”*“‘“L C/!*:'(ﬁlz) u"-|—...]

d3'3 (k) @) @n 2 a2
{(2—u)1+~ [1+51 2-u)+ 902 - u) ] +(9((2 u) ) }
{4 2i0 [ e0a-ue-0] +0 (30 )
PG 1+E806-u)| +0(@-u ) }
(3 — u)mti !

UV(& _
{ ol fpn ey e e+ e a0 0 () ) }
(39

where 7, = +p51/5§; Yo = —pﬁl/ﬁé-
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Appendix B: Borel of Adler function

In the inverse Borel transform, Eq. (28), when neglecting the O(...) terms
in the Borel transform Eq. (39), implies that a polynomial correction to
the PV Borel integral is needed

Ni—1
dd(ome’; k)0 = ST (6d)n(k)a(kowme®) L, (40)

n=0

where

Table: The MS coefficients d,, and the correction polynomial coefficients dd,
(with k = 1).

mf o v 2345 6 [T |8 [ 9] W
doll 1164|637 [ 491 ] 275 | 3150 | 161-10° | 341-20°|3.78-10° | 6.99- 107 | -5.63.10°
(0d): || -272 [ 45.9 | -118. | -304. | -1086. | -3070. | ~1.24-10% | 17 10* | 572104 18- 107 | 6.97-10°
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Apendix C: F function in By,(M?, 0y)p—2k (k > 3)

The function F appearing in Eq. (??) in Borel-Laplace D = 2k part
(k> 3):

F(M?[om) = 27r2f<05i)>ﬁo{[<1_2"”2+2(2”2>2> 5 (25)

Om Om

21 ) (i) s ()|
() vl 52 5" )
where o
Js(A) = % 3 d¢ exp [Ae’.ﬂ e i (42)
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Appendix D: Specific sum rules used

Weight functions g(@?) used in the sum rules (5):
The double-pinched Borel-Laplace transforms B(M?) where M? is a
complex squared energy parameter:

2\ 2 1 2
gMz(Q2) = (1—1—3) Wexp <I\C\/)l2> = (43a)

m

2\ 2 2 2 2\ 2 2
<1+Q> —2M<1+Q>+2(M>]exp<Q2>
Om Om Om Om M

G (@) = {
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Appendix D: Specific sum rules used

The two sides of the sum rule (5) are then written as

1 [om o\’ o
Bexp(/\/lz; Om) = W/o do (1 — U) exp (7W> wexp(T),  (44)

m

Buy (M2 o) = [(1 - 22”:) +2 (Zj)z (1-exp (—(/\I;;))]

e [T d¢{ (1+69) 22 (14.6) 42 (Mm)] oo (T2)
22 o (-2 b (),
+Bth(M2;Um)D:4+ZBth(M2§Um)D:2k- (45)

k>3
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Appendix D: Specific sum rules used

The last terms here are the contributions of the dimension D = 2k
condensates of the OPE of the Adler function (9)

2m2(0, M?

Bin(M?; 01n) p—s = (M<2);> (1 + 2(7) ; (46a)
3r [T

Bin(M?; 0m) D=6 = p— e[

N2 M2 . M2\ 2 .
(16 -2 (1 e2) () ]exp (o)
Om Om
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Appendix D: Specific sum rules used

On the other hand, one can use FESRs with (double-pinched) momenta
a(2m) which are associated with the following weight functions g(%")
(n=0,1,...):

o) - ()5 (02 S ()

. +3)\ Q2 Q2\ "
ouor - ()2 (2)
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Appendix D: Specific sum rules used

The two sides of the sum rule (5) of these FESR moments are then (we
subtract unity for convenience)

o) = [ dr € o)umplo) -1 (482)
" 1 /" L ,-
2o = L [ 66 6B ) [Du(ome®) — 1] (455)

We consider the first two moments a(>9) and a(>1), up to D = 6 terms.
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