

# Twist-2 and twist-3 GPDs from Lattice QCD

## Krzysztof Cichy Adam Mickiewicz University, Poznań, Poland



# Supported by the National Science Center of Poland SONATA BIS grant No. 2016/22/E/ST2/00013 (2017-2022) OPUS grant No. 2021/43/B/ST2/00497 (2022-2026)

## Outline:

Introduction Quasi-GPDs: – how it works – twist-2 GPDs – twist-3 GPDs Prospects/conclusion

Krzysztof Cichy

Many thanks to my Collaborators for work presented here:

C. Alexandrou, S. Bhattacharya, M. Constantinou, J. Dodson

K. Hadjiyiannakou, K. Jansen, A. Metz, A. Scapellato, F. Steffens

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 1 / 26



## Nucleon structure

One of the central aims of hadron physics: to understand better nucleon structure.





Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 2 / 26



#### Nucleon structure

# One of the central aims of hadron physics: to understand better nucleon structure.

- This is one of the crucial expectations from the Electron-Ion Collider (EIC)!
- In particular, we want to probe the 3D structure.
- Thus, we need to access new kinds of functions: GPDs, TMDs.
- Also higher-twist is of growing importance for the full picture.
- Both theoretical and experimental input needed.





### Nucleon structure

# One of the central aims of hadron physics: to understand better nucleon structure.

- This is one of the crucial expectations from the Electron-Ion Collider (EIC)!
- In particular, we want to probe the 3D structure.
- Thus, we need to access new kinds of functions: GPDs, TMDs.
- Also higher-twist is of growing importance for the full picture.
- Both theoretical and experimental input needed.

Lattice can provide *qualitative* and eventually *quantitative* knowledge of different functions and their moments:

- 1D: form factors
- 1D: parton distribution functions (PDFs)
- 3D: generalized parton distributions (GPDs)
- 3D: transverse momentum dependent PDFs (TMDs)
- 5D: Wigner function







# Lattice QCD – what one should keep in mind



| Introduction |           |  |  |  |
|--------------|-----------|--|--|--|
| Nucleon      | structure |  |  |  |

- x-dependence Quasi-PDFs
- GPDs
- GPDs
- Quasi-GPDs
- Results
- Summary

- Lattice QCD offers a way for a careful *ab initio* study of non-perturbative aspects of QCD.
- Its huge strength: possibility to control all systematic effects: *cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...*
- For many aspects, already precision results with percent/per mille total uncertainty.
- However, many aspects (the difficult ones!) with only exploratory studies.





x-dependence

Quasi-PDFs

Quasi-GPDs

GPDs

Results

Summary

# Lattice QCD – what one should keep in mind



Lattice QCD offers a way for a careful *ab initio* study of non-perturbative aspects of QCD. Nucleon structure

- Its huge strength: possibility to control all systematic effects: cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...
- For many aspects, already precision results with percent/per mille total uncertainty.
- However, many aspects (the difficult ones!) with only exploratory studies.
- Difficult problems need time to:
  - $\star$  find the proper way to address
  - ★ prove computational feasibility
  - $\star$  optimize the computational method
  - acquire all data (long computations...) \*
  - analyze all systematics  $\star$
- Nucleon structure is mostly difficult... and very expensive computationally.
- Thus, do not expect miracles.





x-dependence

Quasi-PDFs

Quasi-GPDs

GPDs

Results

Summary

Nucleon structure

# Lattice QCD – what one should keep in mind





- Its huge strength: possibility to control all systematic effects: *cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...*
- For many aspects, already precision results with percent/per mille total uncertainty.
- However, many aspects (the difficult ones!) with only exploratory studies.
- Difficult problems need time to:
  - $\star$  find the proper way to address
  - \* prove computational feasibility
  - $\star$  optimize the computational method
  - \* acquire all data (long computations...)
  - $\star$  analyze all systematics
- Nucleon structure is mostly difficult... and very expensive computationally.
- Thus, do not expect miracles.
- Overall, expect complementary role of lattice.
- Robust quantitative statements: *low moments, form factors.*
- *x*-dependence: breakthrough in recent years, but a long way to go to solid quantitative statements.







• Recent years (since  $\approx 2013$ ): breakthrough in accessing *x*-dependence.





- Recent years (since  $\approx 2013$ ): breakthrough in accessing *x*-dependence.
- The common feature of all the approaches is that they rely to some extent on the factorization framework:

$$Q(x,\mu_R) = \int_{-1}^{1} \frac{dy}{y} C\left(\frac{x}{y},\mu_F,\mu_R\right) q(y,\mu_F),$$
 some lattice observable





- Recent years (since  $\approx 2013$ ): breakthrough in accessing *x*-dependence.
- The common feature of all the approaches is that they rely to some extent on the factorization framework:

$$Q(x,\mu_R) = \int_{-1}^{1} \frac{dy}{y} C\left(\frac{x}{y},\mu_F,\mu_R\right) q(y,\mu_F),$$
 some lattice observable

- Matrix elements:  $\langle N | \overline{\psi}(z) \Gamma F(z) \Gamma' \psi(0) | N \rangle$ with different choices of  $\Gamma, \Gamma'$  Dirac structures and objects F(z).
  - \* hadronic tensor K.-F. Liu, S.-J. Dong, 1993
  - \* auxiliary scalar quark U. Aglietti et al., 1998
  - \* auxiliary heavy quark W. Detmold, C.-J. D. Lin, 2005
  - \* auxiliary light quark V. Braun, D. Müller, 2007
  - \* quasi-distributions X. Ji, 2013
  - \* "good lattice cross sections" Y.-Q. Ma, J.-W. Qiu, 2014,2017
  - \* **pseudo-distributions** A. Radyushkin, 2017
  - ★ "OPE without OPE" QCDSF, 2017

# Lattice PDFs/GPDs: dynamical progress



# Lattice PDFs/GPDs: dynamical progress



K. Cichy, Progress in x-dependent partonic distributions from lattice QCD, plenary talk LATTICE 2021, 2110.07440

- K. Cichy, Overview of lattice calculations of the x-dependence of PDFs, GPDs and TMDs, plenary talk of Virtual Tribute to Quark Confinement 2021, 2111.04552
- K. Cichy, M. Constantinou, A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results, invited review for a special issue of Adv. High Energy Phys. 2019 (2019) 3036904, 1811.07248
- M. Constantinou, The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD (would-be) plenary talk of LATTICE 2020, EPJA 57 (2021) 77, 2010.02445
- X. Ji et al., Large-Momentum Effective Theory, Rev. Mod. Phys. 93 (2021) 035005
- M. Constantinou et al., Parton distributions and LQCD calculations: toward 3D structure, PPNP 121 (2021) 103908





X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002





X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Main idea:







X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002



Correlation along the  $\xi^-$ -direction:  $q(x) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-, 0) \psi(0) | N \rangle$   $|N\rangle - \text{nucleon at rest in the light-cone frame}$ 





X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002







X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Main idea:  $\xi^{-}$   $\xi^{-}$   $\xi^{+}$   $\xi^{3} \equiv z$ 

Correlation along the  $\xi^-$ -direction:  $q(x) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-, 0) \psi(0) | N \rangle$   $|N \rangle$  – nucleon at rest in the light-cone frame Correlation along the  $\xi^3 \equiv z$ -direction:  $\tilde{q}(x) = \frac{1}{2\pi} \int dz \, e^{ixP_3z} \langle N | \overline{\psi}(z) \Gamma \mathcal{A}(z, 0) \psi(0) | N \rangle$   $|N \rangle$  – nucleon at rest in the standard frame Correlation along the  $\xi^3$ -direction:  $\tilde{q}(x) = \frac{1}{2\pi} \int dz \, e^{ixP_3z} \langle P | \overline{\psi}(z) \Gamma \mathcal{A}(z, 0) \psi(0) | P \rangle$  $|P \rangle$  – boosted nucleon





X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002



Matching (Large Momentum Effective Theory (LaMET) X. Ji, Parton Physics from Large-Momentum Effective Field Theory, Sci.China Phys.Mech.Astron. 57 (2014) 1407  $\rightarrow$  brings quasi-distribution to the light-cone distribution, up to power-suppressed effects:

$$\begin{split} \tilde{q}(x,\mu,P_3) &= \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{P_3}\right) q(y,\mu) + \mathcal{O}\left(\Lambda_{\rm QCD}^2/P_3^2, M_N^2/P_3^2\right) \\ \text{quasi-PDF} & \text{pert.kernel} \quad \text{PDF} & \text{higher-twist effects} \end{split}$$

Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 6 / 26





- Parton distribution functions (PDFs) formal definition:  $f(x,\mu) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle P | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-,0) \psi(0) | P \rangle$
- Generalized parton distributions (GPDs):  $F(x,\xi,t,\mu) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle P'' | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-,0) \psi(0) | P' \rangle$ The only difference: momentum transfer i.e.  $P'' \neq P'$  (P'' = P' + Q,  $t = -Q^2$ ).



# Generalized parton distributions (GPDs)

- Parton distribution functions (PDFs) formal definition:  $f(x,\mu) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle P | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-,0) \psi(0) | P \rangle$
- Generalized parton distributions (GPDs):  $F(x,\xi,t,\mu) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle P'' | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-,0) \psi(0) | P' \rangle$ The only difference: momentum transfer i.e.  $P'' \neq P'$  (P'' = P' + Q,  $t = -Q^2$ ).
- GPDs reduce to PDFs in the forward limit, e.g. H(x, 0, 0) = q(x)
- Moments of GPDs are form factors, e.g.  $\int dx H(x,\xi,t) = F_1(t)$
- Experimental access:
  - \* PDFs Deep Inelastic Scattering (DIS)  $ep \longrightarrow eX$
  - \* GPDs Deeply Virtual Compton Scattering (DVCS)  $ep \rightarrow e'p'\gamma$







- Parton distribution functions (PDFs) formal definition:  $f(x,\mu) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle P | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-,0) \psi(0) | P \rangle$
- Generalized parton distributions (GPDs):  $F(x,\xi,t,\mu) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle P'' | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-,0) \psi(0) | P' \rangle$ The only difference: momentum transfer i.e.  $P'' \neq P'$  (P'' = P' + Q,  $t = -Q^2$ ).
- GPDs reduce to PDFs in the forward limit, e.g. H(x, 0, 0) = q(x)
- Moments of GPDs are form factors, e.g.  $\int dx H(x,\xi,t) = F_1(t)$
- Experimental access:
  - \* PDFs Deep Inelastic Scattering (DIS)  $ep \longrightarrow eX$
  - \* GPDs Deeply Virtual Compton Scattering (DVCS)  $ep \longrightarrow e'p'\gamma$

Quasi-GPDs: similar procedure to quasi-PDFs Important new aspect: 2 or 4 GPDs need to be disentangled, e.g. H and E:

 $\mathcal{M}(z,t,\xi;\,\mu_R;\,\Gamma,\overline{\Gamma}) = \mathcal{K}_H(\Gamma,\overline{\Gamma})H(z,t,\xi;\mu_R) + \mathcal{K}_E(\Gamma,\overline{\Gamma})E(z,t,\xi;\mu_R).$ 







x-dependence

Quasi-PDFs

Quasi-GPDs

**GPDs** 

Results

Summary

# **Quasi-GPDs** lattice procedure





Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 8 / 26



x-dependence

Quasi-PDFs

Quasi-GPDs

**GPDs** 

Results

Summary

## **Quasi-GPDs** lattice procedure





most costly part of the procedure! needs several  $\vec{Q}$  vectors

Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 8 / 26



**GPDs** 

## **Quasi-GPDs** lattice procedure





most costly part of the procedure! needs several  $\vec{Q}$  vectors

logarithmic and power divergences in bare matrix elements



**GPDs** 

Results

Summary

## **Quasi-GPDs** lattice procedure





most costly part of the procedure! needs several  $\vec{Q}$  vectors

logarithmic and power divergences in bare matrix elements also: one needs to disentangle 2 GPDs types H-GPDs and E-GPDs (different projectors)



x-dependence

Quasi-PDFs

Quasi-GPDs

**GPDs** 

Results

Summary

Nucleon structure

## Quasi-GPDs lattice procedure





most costly part of the procedure! needs several  $\vec{Q}$  vectors

logarithmic and power divergences in bare matrix elements also: one needs to disentangle 2 GPDs types *H*-GPDs and *E*-GPDs (different projectors)

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")



x-dependence

Quasi-PDFs

Quasi-GPDs

**GPDs** 

Results

Summary

## **Quasi-GPDs** lattice procedure





most costly part of the procedure! needs several  $\vec{Q}$  vectors

logarithmic and power divergences in bare matrix elements also: one needs to disentangle 2 GPDs types *H*-GPDs and *E*-GPDs (different projectors)

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

needs a sufficiently large momentum valid up to higher-twist effects



x-dependence

Quasi-PDFs

Quasi-GPDs

**GPDs** 

Results

Summary

Nucleon structure

## Quasi-GPDs lattice procedure





most costly part of the procedure! needs several  $\vec{Q}$  vectors

logarithmic and power divergences in bare matrix elements also: one needs to disentangle 2 GPDs types *H*-GPDs and *E*-GPDs (different projectors)

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

needs a sufficiently large momentum valid up to higher-twist effects

# the final desired object!

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 8 / 26



Renorm ME

Transversity

Comparison

Twist-3

Summary

Matched GPDs

Results

Setup Bare ME

# Setup



#### Lattice setup:

- fermions:  $N_f = 2$  twisted mass fermions + clover term
- gluons: Iwasaki gauge action,  $\beta = 1.778$
- gauge field configurations generated by ETMC
- lattice spacing  $a \approx 0.093$  fm,
- $32^3 \times 64 \Rightarrow L = 3$  fm,
- $m_{\pi} \approx 260$  MeV.

| $P_3$    | $P_3$ [GeV] | $N_{ m meas}$ |
|----------|-------------|---------------|
| $4\pi/L$ | 0.83        | 4152          |
| $6\pi/L$ | 1.25        | 42080         |
| $8\pi/L$ | 1.67        | 112192        |

Always: u - d flavor combination

ETMC, Phys. Rev. Lett. 125 (2020) 262001ETMC, Phys. Rev. D105 (2022) 034501S. Bhattacharya et al., 2112.05538





Renorm ME

Transversity

Comparison

Twist-3

Summary

Matched GPDs

Results

Setup Bare ME

# Setup



#### Lattice setup:

- fermions:  $N_f = 2$  twisted mass fermions + clover term
- gluons: Iwasaki gauge action,  $\beta = 1.778$
- gauge field configurations generated by ETMC
- lattice spacing  $a \approx 0.093$  fm,
- $32^3 \times 64 \Rightarrow L = 3$  fm,
- $m_{\pi} \approx 260$  MeV.

| $P_3$    | $P_3$ [GeV] | $N_{ m meas}$ |
|----------|-------------|---------------|
| $4\pi/L$ | 0.83        | 4152          |
| $6\pi/L$ | 1.25        | 42080         |
| $8\pi/L$ | 1.67        | 112192        |

Always: u - d flavor combination

Kinematics:

- three nucleon boosts ( $\xi = 0$ ):  $P_3 = 0.83, 1.25, 1.67$  GeV,
- momentum transfer ( $\xi = 0$ ):  $-t = 0.69 \text{ GeV}^2$ ,



ETMC, Phys. Rev. Lett. 125 (2020) 262001ETMC, Phys. Rev. D105 (2022) 034501S. Bhattacharya et al., 2112.05538



Renorm ME

Transversity

Comparison

Twist-3

Summary

Matched GPDs

Results

Setup Bare ME

# Setup



#### Lattice setup:

- fermions:  $N_f = 2$  twisted mass fermions + clover term
- gluons: Iwasaki gauge action,  $\beta = 1.778$
- gauge field configurations generated by ETMC
- lattice spacing  $a \approx 0.093$  fm,
- $32^3 \times 64 \Rightarrow L = 3$  fm,
- $m_{\pi} \approx 260$  MeV.

| $P_3$    | $P_3$ [GeV] | $N_{ m meas}$ |
|----------|-------------|---------------|
| $4\pi/L$ | 0.83        | 4152          |
| $6\pi/L$ | 1.25        | 42080         |
| $8\pi/L$ | 1.67        | 112192        |

Always: u - d flavor combination

Kinematics:

- three nucleon boosts ( $\xi = 0$ ):  $P_3 = 0.83, 1.25, 1.67$  GeV,
- momentum transfer ( $\xi = 0$ ):  $-t = 0.69 \text{ GeV}^2$ ,
- nucleon boost ( $\xi \neq 0$ ):  $P_3 = 1.25$  GeV,
- momentum transfer  $(\xi \neq 0)$ :  $-t = 1.02 \text{ GeV}^2$ .



ETMC, Phys. Rev. Lett. 125 (2020) 262001ETMC, Phys. Rev. D105 (2022) 034501S. Bhattacharya et al., 2112.05538



#### Bare matrix elements



Lattice matrix elements need to be computed with 2 different projections (unpolarized/polarized). Below for the unpolarized Dirac insertion (for unpolarized GPDs)







Lattice matrix elements need to be computed with 2 different projections (unpolarized/polarized). Below for the unpolarized Dirac insertion (for unpolarized GPDs)



Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 10 / 26





Removal of divergences and disentangling of H- and E-GPDs. Unpolarized Dirac insertion (for unpolarized GPDs)







Removal of divergences and disentangling of H- and E-GPDs. Unpolarized Dirac insertion (for unpolarized GPDs)



Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 11 / 26



## Light-cone distributions



Reconstruction of x-dependence and matching to light cone. Unpolarized Dirac insertion (for unpolarized GPDs)






Reconstruction of x-dependence and matching to light cone. Unpolarized Dirac insertion (for unpolarized GPDs)



Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 12 / 26



3

# Comparison of PDFs and *H*-GPDs





# $\frac{\text{unpolarized}}{\left[--H(r)-\text{GPD} \ f=0\right]} \quad \text{ETMC, Phys. Rev. Lett. 125 (2020) 262001}$



Krzysztof Cichy



# **Comparison of PDFs and** *H*-**GPDs**





**unpolarized** ETMC, Phys. Rev. Lett. 125 (2020) 262001  $\begin{array}{c} & & \\ \hline & - & H(x) - \text{GPD}, \xi = 0 \\ \hline & - & H(x) - \text{GPD}, \xi = |1/3| \\ \hline & - & f_1(x) \\ \hline & P_3 = 1.25 \text{ GeV} \\ \hline & P_3 = 1.25 \text{ GeV} \\ \hline & \xi = 0, 1/3 \\ 0 \end{array}$ 

0.5

Important insights from models: S. Bhattacharya, C. Cocuzza, A. Metz

0

-0.5

Phys. Lett. B788 (2019) 453 Phys. Rev. D102 (2020) 054201

-1



# Comparison of PDFs and *H*-GPDs





unpolarized ETMC, Phys. Rev. Lett. 125 (2020) 262001 3 - H(x)-GPD,  $\xi = 0$ - H(x)-GPD,  $\xi = |1/3|$  $-f_1(x)$  $P_3 = 1.25 \,\, {\rm GeV}$ 2  $P_3 = 1.25 \text{ GeV}$  $-t \models 0, 0.69, 1.02 \text{ GeV}^2$  $\xi = 0, 1/3$ -0.5 0.5 -1 0 x- H(x)-GPD  $-f_1(x)$  $P_3 = 1.67 \text{ GeV}$  $P_3 = 1.67 \text{ GeV}$  $2 - t = 0, 0.69 \text{ GeV}^2$  $\xi = 0$ 0 -0.5 0.5 -1 0 x

Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 13 / 26



Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 13 / 26



Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 13 / 26





Transversity GPDs: ETMC, Phys. Rev. D105 (2022) 034501  $\stackrel{\downarrow}{4}$  4 GPDs:  $H_T$ ,  $E_T$ ,  $\tilde{H}_T$ ,  $\tilde{E}_T$ 



Three nucleon boosts ( $\xi = 0$ ):  $P_3 = 0.83, 1.25, 1.67$  GeV Nucleon boost ( $\xi \neq 0$ ):  $P_3 = 1.25$  GeV

Momentum transfer ( $\xi = 0$ ):  $-t = 0.69 \text{ GeV}^2$ Momentum transfer ( $\xi \neq 0$ ):  $-t = 1.02 \text{ GeV}^2$ 





Transversity GPDs: ETMC, Phys. Rev. D105 (2022) 034501





Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 14 / 26





labora1







Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 15 / 26





#### ETMC, Phys. Rev. D105 (2022) 034501



















Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 16 / 26















Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 17 / 26



4 GPDs:  $H_T$ ,  $E_T$ ,  $\tilde{H}_T$ ,  $\tilde{E}_T$ 

#### Transversity GPDs





More fundamental quantity:  $E_T + 2 \tilde{H}_T$ 









ETMC, Phys. Rev. D105 (2022) 034501

More fundamental quantity:  $E_T + 2\tilde{H}_T$ 

- related to the transverse spin structure of the proton
- physically interpreted as lateral deformation in the distribution of transversely polarized quarks in an unpolarized proton
- lowest Mellin moment in the forward limit: transverse spin-flavor dipole moment in an unpolarized target  $(k_T)$
- second moment related to the transverse-spin quark angular momentum in an unpolarized proton







ETMC, Phys. Rev. D105 (2022) 034501

More fundamental quantity:  $E_T + 2 \tilde{H}_T$ 

- related to the transverse spin structure of the proton
- physically interpreted as lateral deformation in the distribution of transversely polarized quarks in an unpolarized proton
- lowest Mellin moment in the forward limit: transverse spin-flavor dipole moment in an unpolarized target  $(k_T)$
- second moment related to the transverse-spin quark angular momentum in an unpolarized proton





Introduction

Transversity Comparison

Twist-3

Summary

Results Setup Bare ME Renorm ME Matched GPDs

# Moments of transversity GPDs



n = 0 Mellin moments:

$$\int_{-1}^{1} dx \, H_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_{3}) = A_{T10}(t) ,$$

$$\int_{-1}^{1} dx \, E_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_{3}) = B_{T10}(t) ,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t) ,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0 ,$$
(1)

- lowest moments of GPDs skewness-independent,
- lowest moments of quasi-GPDs boost-independent.

n = 1 Mellin moments (related to GFF of one-derivative tensor operator):

$$\int_{-1}^{1} dx \, x \, H_{T}(x,\xi,t) = A_{T20}(t) ,$$

$$\int_{-1}^{1} dx \, x \, E_{T}(x,\xi,t) = B_{T20}(t) ,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{H}_{T}(x,\xi,t) = \widetilde{A}_{T20}(t) , \qquad (3)$$

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_{T}(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) , \qquad (2)$$

• skewness-dependence only in for  $\tilde{E}_T$  (only  $\xi$ -odd GPD).

Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 19 / 26



# Moments of transversity GPDs



| Moments of        | $H_T(x,\xi=0,t=-0.69{ m GeV}^2)$ |                          |                          | $H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$ |
|-------------------|----------------------------------|--------------------------|--------------------------|----------------------------------------------|
|                   | $P_3 = 0.83 \text{ GeV}$         | $P_3 = 1.25 \text{ GeV}$ | $P_3 = 1.67 \text{ GeV}$ | $P_3 = 1.25  \mathrm{GeV}$                   |
| $H_{Tq}$          | 0.65(4)                          | 0.64(6)                  | 0.81(10)                 | 0.49(5)                                      |
| $H_T$             | 0.69(4)                          | 0.67(6)                  | 0.84(10)                 | 0.45(4)                                      |
| $xH_T$            | 0.20(2)                          | 0.21(2)                  | 0.24(3)                  | 0.15(2)                                      |
| $A_{T10} (z = 0)$ | 0.65(4)                          | 0.65(6)                  | 0.82(10)                 | 0.49(5)                                      |



Moments of transversity GPDs



| Moments of        | $H_T(x,\xi=0,t=-0.69{ m GeV}^2)$ |                          |                          | $H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$ |
|-------------------|----------------------------------|--------------------------|--------------------------|----------------------------------------------|
|                   | $P_3 = 0.83 \text{ GeV}$         | $P_3 = 1.25 \text{ GeV}$ | $P_3 = 1.67 \text{ GeV}$ | $P_3 = 1.25  \mathrm{GeV}$                   |
| $H_{Tq}$          | 0.65(4)                          | 0.64(6)                  | 0.81(10)                 | 0.49(5)                                      |
| $H_T$             | 0.69(4)                          | 0.67(6)                  | 0.84(10)                 | 0.45(4)                                      |
| $xH_T$            | 0.20(2)                          | 0.21(2)                  | 0.24(3)                  | 0.15(2)                                      |
| $A_{T10} (z = 0)$ | 0.65(4)                          | 0.65(6)                  | 0.82(10)                 | 0.49(5)                                      |

Mellin moments  $P_3$ -independent, preserved by matching, suppressed with increasing -t.





| Moments of        | $H_T(x,\xi=0,t=-0.69{ m GeV}^2)$ |                          |                          | $H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$ |
|-------------------|----------------------------------|--------------------------|--------------------------|----------------------------------------------|
|                   | $P_3 = 0.83 \text{ GeV}$         | $P_3 = 1.25 \text{ GeV}$ | $P_3 = 1.67 \text{ GeV}$ | $P_3 = 1.25  \mathrm{GeV}$                   |
| $H_{Tq}$          | 0.65(4)                          | 0.64(6)                  | 0.81(10)                 | 0.49(5)                                      |
| $H_T$             | 0.69(4)                          | 0.67(6)                  | 0.84(10)                 | 0.45(4)                                      |
| $xH_T$            | 0.20(2)                          | 0.21(2)                  | 0.24(3)                  | 0.15(2)                                      |
| $A_{T10} (z = 0)$ | 0.65(4)                          | 0.65(6)                  | 0.82(10)                 | 0.49(5)                                      |

Mellin moments  $P_3$ -independent, preserved by matching, suppressed with increasing -t.

| Moments of                    | $E_T(x,\xi=0,t=-0.69{\rm GeV}^2)$                |                          | $H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$ |                                                          |
|-------------------------------|--------------------------------------------------|--------------------------|----------------------------------------------|----------------------------------------------------------|
|                               | $P_3 = 0.83 \text{ GeV}$                         | $P_3 = 1.25 \text{ GeV}$ | $P_3 = 1.67  {\rm GeV}$                      | $P_3 = 1.25  \mathrm{GeV}$                               |
| $E_{Tq}$                      |                                                  | 1.20(42)                 | 2.05(65)                                     | 0.67(19)                                                 |
| $E_T$                         |                                                  | 1.15(43)                 | 2.10(67)                                     | 0.73(19)                                                 |
| $xE_T$                        |                                                  | 0.06(4)                  | 0.13(5)                                      | 0.11(11)                                                 |
| $B_{T10} \ (z=0)$             | 1.71(28)                                         | 1.22(43)                 | 2.10(67)                                     | 0.68(19)                                                 |
| Moments of                    | $\widetilde{H}_T(x,\xi=0,t=-0.69\mathrm{GeV}^2)$ |                          |                                              | $\widetilde{H}_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$ |
|                               | $P_3 = 0.83 \text{ GeV}$                         | $P_3 = 1.25 \text{ GeV}$ | $P_3 = 1.67  {\rm GeV}$                      | $P_3 = 1.25  \mathrm{GeV}$                               |
| $\widetilde{H}_{Tq}$          |                                                  | -0.44(20)                | -0.90(32)                                    | -0.26(9)                                                 |
| $\widetilde{H}_T$             |                                                  | -0.42(21)                | -0.92(33)                                    | -0.27(9)                                                 |
| $x\widetilde{H}_T$            |                                                  | -0.17(8)                 | -0.30(10)                                    | -0.05(5)                                                 |
| $\widetilde{A}_{T10} \ (z=0)$ | -0.67(14)                                        | -0.45(21)                | -0.92(33)                                    | -0.24(8)                                                 |

Similar conclusions (but very large errors).



# Comparison of PDFs and GPDs



ETMC, Phys. Rev. Lett. 125 (2020) 262001 ETMC, Phys. Rev. D105 (2022) 034501







# Comparison of PDFs and GPDs



ETMC, Phys. Rev. Lett. 125 (2020) 262001 ETMC, Phys. Rev. D105 (2022) 034501





Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 21 / 26





PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.





PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum. Twist-3:

- no density interpretation,
- contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.





PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum. Twist-3:

- no density interpretation,
- contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs:  $g_T$ ,  $h_L$ , e
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087





PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

a = 0.093 fm

Twist-3:

- $m_{\pi} = 260 \text{ MeV}$ TMF QUASI no density interpretation,
- contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs:  $q_T$ ,  $h_L$ , e
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

See also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

- lattice extraction of  $g_T^{u-d}(x)$  and  $h_L^{u-d}(x)$ 
  - + test of Wandzura-Wilczek approximation
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R)
  - S. Bhattacharva et al., 2107.02574 (PRD in press)



Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 22 / 26





PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

a = 0.093 fm

 $m_{\pi} = 260 \text{ MeV}$ 

Twist-3:

- QUASI no density interpretation,
- contain important information about qgq correlations,

TMF

- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs:  $q_T$ ,  $h_L$ , e
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

See also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

- lattice extraction of  $g_T^{u-d}(x)$  and  $h_L^{u-d}(x)$ 
  - + test of Wandzura-Wilczek approximation
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R)
  - S. Bhattacharya et al., 2107.02574 (PRD in press)



#### Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 22 / 26





PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

Twist-3:

- $m_{\pi} = 260 \text{ MeV}$ TMF QUASI no density interpretation, contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs:  $q_T$ ,  $h_L$ , e S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

See also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

- lattice extraction of  $g_T^{u-d}(x)$  and  $h_L^{u-d}(x)$ + test of Wandzura-Wilczek approximation
  - S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R)
  - S. Bhattacharya et al., 2107.02574 (PRD in press)
- first exploration of twist-3 GPDs

S. Bhattacharya et al., 2112.05538



Krzysztof Cichy



# First exploration of twist-3 GPDs



Very recently, we combined our explorations of GPDs and of twist-3 distributions S. Bhattacharya et al., 2112.05538

# $$\begin{split} \text{Twist-3 axial GPDs:} \ \ \widetilde{G}_1, \ \widetilde{G}_2, \ \widetilde{G}_3, \ \widetilde{G}_4 \\ h_{\gamma^j \gamma_5} &= \langle \langle \frac{g_{\perp}^{j\rho} \Delta_\rho \gamma_5}{2m} \rangle \rangle [F_{\widetilde{E}} + F_{\widetilde{G}_1}] + \langle \langle g_{\perp}^{j\rho} \gamma_\rho \gamma_5 \rangle \rangle [F_{\widetilde{H}} + F_{\widetilde{G}_2}] + \langle \langle \frac{g_{\perp}^{j\rho} \Delta_\rho \gamma^+ \gamma_5}{P^+} \rangle \rangle F_{\widetilde{G}_3} + \langle \langle \frac{i\epsilon_{\perp}^{j\rho} \Delta_\rho \gamma^+}{P^+} \rangle \rangle F_{\widetilde{G}_4} \,. \end{split}$$

Bare ME: (same lattice setup)



Krzysztof Cichy



First exploration of twist-3 GPDs



Contributions from different insertions and projectors  $(\vec{Q} = (Q_x, 0, 0))$ :

```
\Pi(\gamma^2\gamma^5,\Gamma_0): \widetilde{H} + \widetilde{G}_2 \text{ and } \widetilde{G}_4,

\Pi(\gamma^2\gamma^5,\Gamma_2): \widetilde{H} + \widetilde{G}_2 \text{ and } \widetilde{G}_4,

\Pi(\gamma^1\gamma^5,\Gamma_1): \widetilde{H} + \widetilde{G}_2 \text{ and } \widetilde{E} + \widetilde{G}_1,

\Pi(\gamma^1\gamma^5,\Gamma_3): \widetilde{G}_3.
```



S. Bhattacharya et al., 2112.05538

Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 24 / 26



0.5

0

x

-10

S. Bhattacharya et al., 2112.05538

-1

-0.5



-4

-1

-0.5

 $P_3 = 1.25 \text{ GeV}$ 

 $-P_3 = 1.67 \,\,\mathrm{GeV}$ 

0.5

1

0

x



# First exploration of twist-3 GPDs





Krzysztof Cichy

Twist-2 and twist-3 GPDs from LQCD – XVth CONF 2022 – 25 / 26



### **Conclusions and prospects**



Introduction

Results

Summary

• Enormous progress in lattice calculations of GPDs!



### **Conclusions and prospects**



| Introduction |  |
|--------------|--|
|              |  |

Results

Summary

- Enormous progress in lattice calculations of GPDs!
- Very encouraging results, but there are still major challenges related to control of several sources of systematics.





| Introduction |  |
|--------------|--|
|              |  |

- Results
- Summary

- Enormous progress in lattice calculations of GPDs!
- Very encouraging results, but there are still major challenges related to control of several sources of systematics.
- GPDs much more challenging than PDFs:
  - $\star$  signal decays with increasing -t,
  - $\star$  separate calculations for different -t,
  - $\star$  discreteness of -t,
  - $\star$  several projectors needed to disentangle GPDs,
  - non-zero skewness enhanced power corrections at the ERBL-DGLAP boundary.




| millouuction |
|--------------|
|--------------|

- Results
- Summary

- Enormous progress in lattice calculations of GPDs!
- Very encouraging results, but there are still major challenges related to control of several sources of systematics.
- GPDs much more challenging than PDFs:
  - $\star$  signal decays with increasing -t,
  - $\star$  separate calculations for different -t,
  - $\star$  discreteness of -t,
  - $\star$  several projectors needed to disentangle GPDs,
  - non-zero skewness enhanced power corrections at the ERBL-DGLAP boundary.
- Expect:
  - $\star$  slow, but consistent progress,
  - $\star$  complementary role of LQCD and phenomenology.





| millouuction |
|--------------|
|--------------|

- Results
- Summary

- Enormous progress in lattice calculations of GPDs!
- Very encouraging results, but there are still major challenges related to control of several sources of systematics.
- GPDs much more challenging than PDFs:
  - $\star$  signal decays with increasing -t,
  - \* separate calculations for different -t,
  - $\star$  discreteness of -t,
  - $\star$  several projectors needed to disentangle GPDs,
  - non-zero skewness enhanced power corrections at the ERBL-DGLAP boundary.
- Expect:
  - $\star$  slow, but consistent progress,
  - $\star$   $\,$  complementary role of LQCD and phenomenology.

Thank you for your attention!