Frontiers in precision for global PDF analyses

Tim Hobbs – Fermilab, IIT

2nd August 2022

Confinement XV

<u>see 'roundtable'</u>: High Precision QCD Frontier

Stavanger, Norway

1-6 August 2022

this talk: PDFs central to 2 core needs in fundamental QCD

1: precision BSM searches limited by (incomplete) proton structure info

- → many standard-candle HEP measurements PDF-limited
- → taming PDF dependence: knowledge of hard-to-access phase-space regions
- \rightarrow PDF studies vital to NP QCD (confinement!), mapping hadron structure

- **2**: must interrogate (p)QCD to achieve higher theoretical accuracy
 - \rightarrow stability of PDF extractions partly depends on pQCD formalism
 - → tests of, e.g., QCD factorization, (systematic) knowledge of limits needed

highlight through:

i current status of PDFs; ii experimental opportunities (EIC)

iii conclusion(s)

from NNLO analyses, state-of-the-art predictions for fundamental LHC observables → *e.g.*, total cross sections at 14 TeV

CT18 NNLO, PRD **103** (2021) 1

 significant PDF-driven uncertainties; also, systematic effects: W cross sections sensitive to inclusion of 2016 7 TeV ATLAS inclusive W/Z data

 \rightarrow these include σ_H , $\sin^2 \theta_W$, m_W , ...

ATLAS, 1701.07240					for example:					
Channel	$m_{W^+} - m_{W^-}$ [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.
$W \rightarrow e v$	-29.7	17.5	0.0	4.9	0.9	5.4	0.5	0.0	24.1	30.7
$W \to \mu \nu$	-28.6	16.3	11.7	0.0	1.1	5.0	0.4	0.0	26.0	33.2
Combined	-29.2	12.8	3.3	4.1	1.0	4.5	0.4	0.0	23.9	28.0

 \rightarrow the PDF uncertainty can be a/the dominant uncertainty!

 \rightarrow frontier efforts at the HL-LHC aim for (sub)percent precision

 \rightarrow large cross-cutting effort spanning theory/expt to improve

- heightened theory accuracy (HO, power corrections)
- novel measurements (EIC, LHC, vA)
- generator development Snowmass21, Campbell et al.: 2203.11110

Snowmass21, Amoroso et al.: 2203.13923

 \rightarrow driven by marriage of latest theory, high-energy hadronic data

$$\sigma(AB \to W/Z + X) = \sum_{n} \alpha_s^n \sum_{a,b} \int dx_a dx_b f_{a/A}(x_a, \mu^2) \hat{\sigma}_{ab \to W/Z + X}^{(n)}(\hat{s}, \mu^2) f_{b/B}(x_b, \mu^2)$$

periodic benchmarking (PDF4LHC21) valuable to cross-check treatment of data

 \rightarrow seek methodological independence in identifying data-driven PDF features

1

- current/future analyses involve interplay between pQCD & other dynamics
- NNLO+ necessary to stabilize scale uncertainties; especially over wide scales

CT18 NNLO, PRD 103 (2021) 1

6

electroweak (EW) corrections also vital

• at $\mathcal{O}(\alpha_s^2)$ accuracy, EW corrections and explicit $\gamma(x, \mu^2)$ needed

Xie, TJH, Hou, Schmidt, Yan, Yuan: PRD105 (2022) 5, 054006

• important for high-energy LHC processes: *e.g.*, 13 TeV W+H production

TeV-scale NLO EW corrections dominated (60%) by single-photon (PDF) contributions
 → requires delicate treatment along with QCD perturbative effects

i necessary for electroweak precision: photon PDF

• at $\mathcal{O}(\alpha_s^2)$ accuracy, EW corrections and explicit $\gamma(x, \mu^2)$ needed

Xie, TJH, Hou, Schmidt, Yan, Yuan: PRD105 (2022) 5, 054006

х

following CT14QED, CT18QED now interfaces LUX formalism

 \mathbf{X}

$$x\gamma(x,\mu^{2}) = \frac{1}{2\pi\alpha(\mu^{2})} \int_{x}^{1} \frac{z}{z} \left\{ \int_{\frac{x^{2}m_{p}^{2}}{1-z}}^{\frac{\mu^{2}}{1-z}} \frac{Q^{2}}{Q^{2}} \alpha_{ph}^{2}(-Q^{2}) \left[\left(zp_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}} \right) F_{2}(x/z,Q^{2}) - z^{2}F_{L}(x/z,Q^{2}) \right] - \alpha^{2}(\mu^{2})z^{2}F_{2}(x/z,\mu^{2}) \right\} + \mathcal{O}(\alpha^{2},\alpha\alpha_{s})$$

<u>depends on nonperturbative inputs</u> [kinematical cuts alone can't avoid this]

i parametrization uncertainty: nonperturbative fitting forms

- initial PDFs still not generally calculable through rigorous QCD at $Q = Q_0 = m_c$ (to the needed precision...)
 - \rightarrow subject to complex nonperturbative dynamics
 - \rightarrow practice agnosticism w.r.t. initial parametrization

(some guidance from QCD, QCD-inspired models)

 \rightarrow explore model uncertainty with many forms

high-*x* PDFs remain dominated by large uncertainties

• PDF (Hessian) uncertainties enlarge dramatically in high-*x* limit

PDF4LHC21 benchmarking: 2203.05506

- MC sampling of high-*x* PDFs can sometimes produce irregularities
 - \rightarrow *e.g.*, positive-definiteness not always guaranteed for $x \rightarrow 1$

strong need for high-x sensitive data: JLab12 [24]; (HL-)EIC; FASERv

11

1

i extracting high-x dependence in PDF fits

- high-x PDFs, ratios [e.g., d/u] connected to details of proton WF
- behavior at $x \to 1$ an important nonpert. discriminator
- CT18, parametrize $f_{a/A}(x, Q_0^2) = x^{A_{1,a}}(1-x)^{A_{2a}} \times \Phi_a(x)$

Η

Courtoy and Nadolsky, PRD103, 054029 (2021)

• *d*-PDF information from deuteron scattering; nuclear corrections relevant

$$f^d(x,Q^2) = \int \frac{dz}{z} \int dp_N^2 \,\mathcal{S}^{N/d}(z,p_N^2) \,\widetilde{f}^N(x/z,p_N^2,Q^2)$$

Accardi, TJH, Jing, Nadolsky: EPJC81 (2021) 7, 603

- corrections are generally ~percent-level, but can become larger, especially at <u>high x</u>
- impacts LHC observables; necessary for high precision

- beyond few-body systems, CT, other analyses use heavy-nuclei for flavor separation
 [e.g., vA for strangeness]
- requires knowledge of nuclear corrections; these directly fitted by nPDF analyses
 - \rightarrow better control over *x*, *A* dependence can benefit nucleon PDF extractions

Muzakka, Duwentäster, TJH et al., 2204.13157

- (HL-)EIC can help unravel these issues
 - \rightarrow higher luminosity helpful for nuclear collisions, which have lower \sqrt{s}

nonperturbative theory developments: lattice QCD inputs i

 recent years: progress in *ab initio* hadron-structure calculations from LQCD \rightarrow quasi-PDFs, pseudo-PDFs, quasi-TMDs, ...

there are be important synergies between PDF fitting and lattice QCD

[overlaps with EIC; vDIS; LHC]

lattice data can potentially inform high-x behavior of quark sea

TJH, Wang, Nadolsky, Olness, PRD100 (2019) 9, 094040

u-d at μ_F = 3GeV

15

f(x,Q)

1

0.05

PDF precision both aided and challenged by experiments

- array of (DIS) measurements needed as kinematical lever-arm; distinct EW probes
 → as proxy, consider role of EIC program: impacts on high *x*, HEP pheno.
- EIC explores unique, complementary region in $[x, Q^2]$

ii

→ strong coverage of quark-to-hadron transition region between HERA, JLab12

PDF impacts compared to high-value fixed-target DIS

inclusive EIC may surpass total impact of fixed-target DIS in modern fits

 \rightarrow useful for negotiating among existing high-impact data; high lumi could extend further

impact from simulated (optimistic) pseudodata; estimated by various methods, groups

• broad impact, including on high-x u-, d-PDFs; probes of gluon, quark sea to low x

→ <u>inclusive studies</u> – indications of systematics limitations; **must also investigate**

precision QCD through jet and heavy-flavor production

 DIS jet production, including through charge-current interactions, provides further access to quark-level information
 Arratia, Furletova, TJH, Olness, Sekula; PRD 103 (2021) 7, 074023

 $R_s(\mathbf{x},\mathbf{Q})$ Q=10 GeV

final-state tagging provides lever arm for flavor separation (here, strangeness)

• n.b.: event generation, detector sim from PYTHIA8 + DELPHES; FASTJET reconstruction

 \rightarrow analogous jet measurements might be extended to nonperturbative heavy flavor

challenging measurement: final-state flavor tagging; Jacquet-Blondel reconstruction

 charm production suppressed by >2 orders of magnitude; p_T cross section steeply falling

- reduced δ_{stat} could significantly enhance knowledge of p_{T} dependence

Arratia, Furletova, TJH, Olness, Sekula; PRD 103 (2021) 7, 074023

→ greater event rates may furnish enhanced discriminating power

extracting PDF information from CC DIS requires robust theory accuracy

 \rightarrow can compute NNLO, approximate N³LO corrections for highest energies at EIC

strong perturbative convergence

→ for N³LO[′], scale variations generally contained to $\leq 0.5 - 1\%$

• significantly smaller than PDFdriven uncertainties, which can be as large as $\approx 2\%$

vital ingredient in EIC PDF program

 note improvements at high *x*: suggests possible synergy with highluminosity measurements

precise EIC data impact high-energy predictions

example:

- PDF-driven improvement to
 Higgs-production cross section
- EIC impact on Higgs theory from broad region of the kinematical space it can access

 impact closely tied to that of the integrated gluon PDF

 \rightarrow similar impacts on EW observables

- neutrino oscillation searches (e.g., DUNE)
 require accurate knowledge of vA interaction
 - $\rightarrow E_{v}$ ~ few GeV dominated by RES/DIS
 - → DIS subject to finite-Q², nuclear effects (HTs; TMCs; few- and large-A)

nPDFs key to vDIS precision

 \rightarrow v generators generally implement phenomenological models at LO; minimal error quant.

- nPDFs, QCD-based
 approaches to low-Q, W vDIS
 badly needed
- future near-detector v expts may yield more QCD information

 \rightarrow EIC: measure only "clean" DIS from hadrons; but also explore nuclear medium!

• nPDFs can inform nuclear effects in free-nucleon studies and *vice versa*:

 \rightarrow nuclear effects: jet production, hadronization; implications for <u>AA</u>, <u>UPC</u> programs

• nuclear A dependence requires copious data: high luminosity essential

iii conclusions: toward next-gen precision in nucleon PDFs

- signatures of nonperturbative QCD are etched upon the PDFs
 - → flavor-symmetry breaking (\bar{d}/\bar{u}) ; wave function effects $[d(x \approx 1)]$
 - → nuclear effects [q(x), intermediate x]; description of deuterium data

closely linked to physics of confinement

- critical for understanding QCD; necessary for precision HEP measurements
 - → limit EW precision, sensitivity of BSM tests, neutrino programs
 - \rightarrow closely related to challenge of flavor separation
- recent theory progress: pQCD now at (N)NNLO; interfacing with PDFs
 - \rightarrow higher perturbative accuracy suggests parallel theory improvements
 - → EW higher-order accuracy; introduction of nuclear, nonpert. effects
 - → next-gen unraveling of statistical influence of fitted experiments

future experiments central: JLab12 \rightarrow EIC, HL-LHC, LBNF, ...