Strange-Meson Spectroscopy – from COMPASS to AMBER

Stefan Wallner for the COMPASS and AMBER collaborations (swallner@mpp.mpg.de)

Max Planck Institute for Physics

XVth Quark Confinement and the Hadron Spectrum August 5, 2022

Apparatus for Meson and Baryon Experimental Research

MAX PLANCK INSTITUTE FOR PHYSICS

Understanding the light-meson spectrum

- Completing SU(3)_{flavor} multiplets
- Identifying supernumerous states
 - ➡ Search for exotic strange mesons

nput to other fields of physics

- Strange mesons appear as resonances in multi-body hadronic final states with kaons
- Searches for CP violation
- Searches for physics beyond SM

Understanding the light-meson spectrum

- Completing SU(3)_{flavor} multiplets
- Identifying supernumerous states
 - ➡ Search for exotic strange mesons

Input to other fields of physics

- Strange mesons appear as resonances in multi-body hadronic final states with kaons
- Searches for CP violation
- Searches for physics beyond SM

PDG lists 25 strange mesons

- 16 established states, 9 need further confirmation
- Missing states with respect to quark-model predictions
- Many measurements performed more than 30 years ago

Production of Strange Mesons

- Diffractive scattering of high-energy kaon beam
- Strange mesons appear as intermediate resonances X⁻
- Decay to multi-body hadronic final states
- \blacktriangleright $K^-\pi^-\pi^+$ final state
 - Study in principle all strange meson
 - Study a wide mass range
 - Study different decay mod

Production of Strange Mesons

- Diffractive scattering of high-energy kaon beam
- Strange mesons appear as intermediate resonances X⁻
- Decay to multi-body hadronic final states
- \blacktriangleright $K^-\pi^-\pi^+$ final state
 - Study in principle all strange mesons
 - Study a wide mass range
 - Study different decay modes

Strange-Meson Spectroscopy at COMPASS COMPASS Setup for Hadron Beams

Strange-Meson Spectroscopy at COMPASS The $K^{-}\pi^{-}\pi^{+}$ Data Sample

World's largest data set of about 720 k events

- Rich spectrum of overlapping and interfering X
 - Dominant well known states
 - States with lower intensity are "hidden"

Strange-Meson Spectroscopy at COMPASS The $K^-\pi^-\pi^+$ Data Sample

- World's largest data set of about 720 k events
- Rich spectrum of overlapping and interfering X⁻
 - Dominant well known states
 - States with lower intensity are "hidden"

Strange-Meson Spectroscopy at COMPASS Partial-Wave Analysis of $K^-\pi^-\pi^+$ Final State

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- ► *J^P* spin and parity
- M^ε spin projection
- ξ isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Strange-Meson Spectroscopy at COMPASS Partial-Wave Analysis of $K^{-}\pi^{-}\pi^{+}$ Final State

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- J^P spin and parity
- M^ε spin projection
- ξ isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Strange-Meson Spectroscopy at COMPASS Partial Waves with $J^P = 2^+$

- ▶ Signal in $K_2^*(1430)$ mass region
- ► In different decays
 - ▶ ρ(770) K D
 - K*(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data

Strange-Meson Spectroscopy at COMPASS Partial Waves with $J^{P} = 2^{+}$

- Signal in K^{*}₂(1430) mass region
- ► In different decays
 - ρ(770) K D
 - K*(892) π D

In agreement with previous measurements

Cleaner signal in COMPASS data

Strange-Meson Spectroscopy at COMPASS Partial Waves with $J^{P} = 2^{+}$

Cleaner signal in COMPASS data

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

Strange-Meson Spectroscopy at COMPASS

Searching for Exotic Strange Mesons

PDG

- ▶ *K*(1460) and *K*(1830)
- ► *K*(1630)
 - Unexpectedly small width of only $16 \text{ MeV}/c^2$
 - \blacktriangleright J^P of K(1630) unclear

Strange-Meson Spectroscopy at COMPASS

Searching for Exotic Strange Mesons

PDG

- K(1460) and K(1830)
- ► K(1630)
 - Unexpectedly small width of only $16 \text{ MeV}/c^2$
 - ► J^P of K(1630) unclear

- Peak at about 1.4 GeV/ c^2
 - Potentially from established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - Potential K(1630) signal
 - Accompanied by clear phase motion
 - Width presumably larger than 16 MeV/a
- Weak signal at about 2.0 GeV/c²
 - Potential K(1830) signal

- Peak at about 1.4 GeV/c²
 - Potentially from established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 ${
 m GeV}/c^2$
 - Potential K(1630) signal
 - Accompanied by clear phase motions
 - Width presumably larger than 16 MeV/c
- Weak signal at about 2.0 GeV/c²
 - Potential K(1830) signal.

- Peak at about 1.4 GeV/c²
 - Potentially from established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about $1.7 \,\text{GeV}/c^2$
 - Potential K(1630) signal
 - Accompanied by clear phase motions
 - Width presumably larger than $16 \,\mathrm{MeV}/c^2$

 $^\circ$ Weak signal at about 2.0 GeV/ c^2

Potential *K*(1830) signa

- Peak at about 1.4 GeV/c²
 - Potentially from established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about $1.7 \,\text{GeV}/c^2$
 - Potential K(1630) signal
 - Accompanied by clear phase motions
 - Width presumably larger than $16 \,\mathrm{MeV}/c^2$
- Weak signal at about 2.0 GeV/ c^2
 - Potential K(1830) signal

Strange-Meson Spectroscopy at COMPASS

Searching for Exotic Strange Mesons

Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - ➡ K(1630) supernumerary state
 - \blacktriangleright Candidate for exotic non- $q\overline{q}$ state

Strange-Meson Spectroscopy at COMPASS

Searching for Exotic Strange Mesons

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - ➡ K(1630) supernumerary state
 - \blacktriangleright Candidate for exotic non- $q\overline{q}$ state

Limitations for Strange-Meson Spectroscopy at COMPASS

Limited Kinematic Range of Final-State Particle Identification

- Final-state particle identification does not cover full momentum range
 - ➡ Loss of distinguishing power for some partial waves
 - ➡ Analysis artifacts in these partial waves

- Artifacts can be identified
- Mainly affects only
 - a sub-set of partial waves
 - the range $m_{K\pi\pi} \lesssim 1.6 \,\mathrm{GeV}/c^2$

- Limits access to certain decay modes
- Induces non-negligible systematic uncertainties

Limitations for Strange-Meson Spectroscopy at COMPASS

Limited Kinematic Range of Final-State Particle Identification

- Final-state particle identification does not cover full momentum range
 - ➡ Loss of distinguishing power for some partial waves
 - ➡ Analysis artifacts in these partial waves

- Artifacts can be identified
- Mainly affects only
 - a sub-set of partial waves
 - the range $m_{K\pi\pi} \lesssim 1.6 \,\mathrm{GeV}/c^2$

- Limits access to certain decay modes
- Induces non-negligible systematic uncertainties

Limitations for Strange-Meson Spectroscopy at COMPASS

Limited Kinematic Range of Final-State Particle Identification

- Final-state particle identification does not cover full momentum range
 - ➡ Loss of distinguishing power for some partial waves
 - ➡ Analysis artifacts in these partial waves

- Artifacts can be identified
- Mainly affects only
 - a sub-set of partial waves
 - the range $m_{K\pi\pi} \lesssim 1.6 \,\mathrm{GeV}/c^2$

- Limits access to certain decay modes
- Induces non-negligible systematic uncertainties

Main limiting factors

- Final-state particle identification
- Size of the data samples
 - Low kaon fraction in the beam ($\approx 2\%$)
 - Sample for strange-mesons about 150-times smaller than sample for non-strange mesons
 - ▶ 720 k $K^- + p \rightarrow K^- \pi^- \pi^+ + p$ events
 - ▶ 115 M $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$ events

Experimental Research

Phase I: After long shutdown 2 of LHC [CERN-SPSC-2019-022]

- Proton charge-radius measurement
- Drell-Yan and charmonium production
- *p*-induced \bar{p} production cross section

Phase II: After long shutdown 3 of LHC [arXiv:1808.00848]

Physics with kaon beams

...

- Strange-meson spectroscopy goal: 10× larger data sample
- Kaon-induced charmonium production

Key Requirements for the Experimental Setup

- Upgrade of final-state particle identification
 - Cover wide momentum range
 - Large and uniform acceptance
- Efficient beam-particle identification for high-purity sample
- High-resolution track reconstruction
- Efficient photon detection for access to final states with neutral particles

- Eliminate artifacts caused by limited final-state particle identification
- Increase size of the data sample by increasing acceptance

Radio-Frequency Separated High-Energy Kaon Beam

Increase size of the data sample by increasing kaon fraction in beam

Radio-frequency separation

- Particle species discrimination by time-of-flight
 - Same momentum
 - But different velocity
- ► Transverse kick by RF cavities
- Kick by RF1 compensated or amplified by RF2, depending on phase (velocity)
- Feasibility studies ongoing

Radio-Frequency Separated High-Energy Kaon Beam

A+ Ag>it

Increase size of the data sample by increasing kaon fraction in beam

Radio-frequency separation

- Particle species discrimination by time-of-flight
 - Same momentum
 - But different velocity
- Transverse kick by RF cavities
- Kick by RF1 compensated or amplified by RF2, depending on phase (velocity)
- Feasibility studies ongoing

The virtue of larger data samples

- Improved precision
- Study also small signals in data
- Access to novel analysis methods

Freed-isobar partial-wave analysis

- K₀^{*} mesons (J^P = 0⁺) cannot be directly produced in diffractive scattering
- ► K_0^* mesons appear in $K^-\pi^+$ sub-system of the $K^-\pi^-\pi^+$ final state
- Freed-isobar method allows us to study mesons in sub-systems
 - Developed and successfully applied to COMPASS $\pi^{-}\pi^{-}\pi^{+}$ sample
 - Requires large data samples

The virtue of larger data samples

- Improved precision
- Study also small signals in data
- Access to novel analysis methods

Freed-isobar partial-wave analysis

- K₀^{*} mesons (J^P = 0⁺) cannot be directly produced in diffractive scattering
- K_0^* mesons appear in $K^-\pi^+$ sub-system of the $K^-\pi^-\pi^+$ final state
- Freed-isobar method allows us to study mesons in sub-systems
 - Developed and successfully applied to COMPASS $\pi^{-}\pi^{-}\pi^{+}$ sample
 - Requires large data samples

The virtue of larger data samples

- Improved precision
- Study also small signals in data
- Access to novel analysis methods

Freed-isobar partial-wave analysis

- K₀^{*} mesons (J^P = 0⁺) cannot be directly produced in diffractive scattering
- K_0^* mesons appear in $K^-\pi^+$ sub-system of the $K^-\pi^-\pi^+$ final state
- Freed-isobar method allows us to study mesons in sub-systems
 - Developed and successfully applied to COMPASS $\pi^{-}\pi^{-}\pi^{+}$ sample
 - Requires large data samples

Summary

The Strange-Meson Spectrum

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons

COMPASS

- ▶ World's largest data sample on $K^- + p \rightarrow K^- \pi^- \pi^+ + p$
 - ▶ Most detailed and comprehensive analysis of the $K^-\pi^-\pi^+$ final state so far
- Limited by final-state particle identification and small kaon fraction in beam

AMBER: High-Precision Strange-Meson Spectroscopy

- ► Goal: Collect 10×larger sample using high-intensity and high-energy kaon beam
- Rewrite the PDG for strange mesons, with a single and self-consistent measurement
- Requires experimental setup with uniform acceptance over wide kinematic range including particle identification and measurement of neutral particles
- ► AMBER is open for interested collaborators to join

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons

COMPASS

- ▶ World's largest data sample on $K^- + p \rightarrow K^- \pi^- \pi^+ + p$
 - Most detailed and comprehensive analysis of the $K^-\pi^-\pi^+$ final state so far
- Limited by final-state particle identification and small kaon fraction in beam

AMBER: High-Precision Strange-Meson Spectroscopy

- ► Goal: Collect 10×larger sample using high-intensity and high-energy kaon beam
- Rewrite the PDG for strange mesons, with a single and self-consistent measurement
- Requires experimental setup with uniform acceptance over wide kinematic range including particle identification and measurement of neutral particles
- ► AMBER is open for interested collaborators to join

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons

COMPASS

- ▶ World's largest data sample on $K^- + p \rightarrow K^- \pi^- \pi^+ + p$
 - Most detailed and comprehensive analysis of the $K^-\pi^-\pi^+$ final state so far
- Limited by final-state particle identification and small kaon fraction in beam

AMBER: High-Precision Strange-Meson Spectroscopy

- ► Goal: Collect 10×larger sample using high-intensity and high-energy kaon beam
- Rewrite the PDG for strange mesons, with a single and self-consistent measurement
- Requires experimental setup with uniform acceptance over wide kinematic range including particle identification and measurement of neutral particles
- AMBER is open for interested collaborators to join
Backup

Outline

Kinematic Distribution of $K^-\pi^-\pi^+$ Events 6

- Subsystem $m_{K^-\pi^-}$
- t' Spectrum
- Exclusivity
- 7 Partial-Wave Decomposition of $K^-\pi^-\pi^+$
 - Partial Waves with $J^P = 2^+$ Partial Waves with $J^P = 0^-$

Partial Waves with $J^P=0^-$
Leakage Effect
Incoherent Background
Freed-Isobar Method
Freed-Isobar Method: $0^{-+} 0^+ [\pi \pi]_{0^++} \pi S$
Freed-Isobar Analysis
Zero Modes and 1 ⁻⁺

• Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions

• Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions

Subsystem

180

90

0

-90

-180

-1.0

 $\phi^{K\pi}_{\rm GJ}$ [deg]

▶ Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

 $\cos \theta_{\rm CI}^{K\pi}$

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions

 $\cos \theta_{\rm HF}^{K^-}$

 $m_{K^-\pi^-} \, [{\rm GeV}/c^2]$

Partial waves with $J^P = 2^+$

- ▶ Signal in K₂^{*}(1430) mass region
- In Different decays
 - ▶ ρ(770) K D
 - K*(892) π D
- Clear phase motion in $K_2^*(1430)$ region
 - Characteristic of narrow isolated resonances
- In agreement with previous measurement

Partial waves with $J^P = 2^+$

- Signal in K^{*}₂(1430) mass region
- In Different decays
 - ▶ ρ(770) K D
 - K*(892) π D
- Clear phase motion in $K_2^*(1430)$ region
 - Characteristic of narrow isolated resonances
- In agreement with previous measurement

Partial waves with $J^P = 2^+$

- ▶ Signal in $K_2^*(1430)$ mass region
- In Different decays
 - ρ(770) K D
 - K*(892) π D
- Clear phase motion in $K_2^*(1430)$ region
 - Characteristic of narrow isolated resonances
- In agreement with previous measurement

Partial waves with $J^P = 2^+$

- ▶ Signal in $K_2^*(1430)$ mass region
- In Different decays
 - ρ(770) K D
 - K*(892) π D
- Clear phase motion in $K_2^*(1430)$ region
 - Characteristic of narrow isolated resonances
- In agreement with previous measurement

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

Partial waves with $J^P = 2^+$

- ▶ Signal in $K_2^*(1430)$ mass region
- In Different decays
 - ρ(770) K D
 - K*(892) π D
- Clear phase motion in $K_2^*(1430)$ region
 - Characteristic of narrow isolated resonances
- In agreement with previous measurement

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

Partial-Wave Decomposition of $K^-\pi^-\pi^+$

Partial Waves with $J^P = 0^-$

PDG

- K(1460) and K(1830) potentially quark-model states
- \blacktriangleright K(1630) candidate for supernumerary state
 - Unexpectedly small width: $16 \text{ MeV}/c^2$
 - \blacktriangleright J^P of K(1630) unclear

Partial-Wave Decomposition of $K^-\pi^-\pi^+$

Partial Waves with $J^P = 0^-$

PDG

- K(1460) and K(1830) potentially quark-model states
- ► K(1630) candidate for supernumerary state
 - Unexpectedly small width: $16 \,\mathrm{MeV}/c^2$
 - J^P of K(1630) unclear

$0^- 0^+ \rho(770) \ K P$ partial wave

- Peak at about 1.4 GeV/ c^2
 - Potentially from established K(1460)
 - $m \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - Potential K(1630) signal
 - Accompanied by clear phase motion
 - Width presumably larger than 16 MeV/c

$0^- \, 0^+ \, ho$ (770) K P partial wave

- Peak at about 1.4 GeV/c²
 - Potentially from established K(1460)
 - $m \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about $1.7 \, {
 m GeV}/c^2$
 - Potential K(1630) signal
 - Accompanied by clear phase motion
 - Width presumably larger than $16 \text{ MeV}/c^2$

$0^- 0^+ \rho(770) K P$ partial wave

- Peak at about 1.4 GeV/c²
 - Potentially from established K(1460)
 - $m \lesssim 1.5 \, {
 m GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - Potential K(1630) signal
 - Accompanied by clear phase motion
 - Width presumably larger than $16 \,\mathrm{MeV}/c^2$

Ar Agait

PDG

- ► *K*(1460) and *K*(1830)
- ► K(1630)
 - Unexpectedly small width: $16 \text{ MeV}/c^2$
 - ► J^P of K(1630) unclear

Ar Agait

PDG

- ► K(1460) and K(1830)
- ► K(1630)
 - Unexpectedly small width: $16 \text{ MeV}/c^2$
 - ► J^P of K(1630) unclear

Ar Aysit

$K^{-}\pi^{-}\pi^{+}$ from COMPASS

- Peak at about 1.4 GeV/ c^2
 - Potentially from established K(1460)
 - But, $m \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - Potential K(1630) signal
 - Accompanied by clear phase motion
 - Width presumably larger than 16 MeV/c

Ar Aysit

$K^{-}\pi^{-}\pi^{+}$ from COMPASS

- Peak at about 1.4 GeV/c²
 - Potentially from established K(1460)
 - \blacktriangleright But, $m \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - Potential K(1630) signal
 - Accompanied by clear phase motion
 - Width presumably larger than 16 MeV/c

$K^{-}\pi^{-}\pi^{+}$ from COMPASS

- Peak at about 1.4 GeV/c²
 - Potentially from established K(1460)
 - ▶ But, $m \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by analysis artifacts
- Second peak at about 1.7 GeV/c²
 - Potential K(1630) signal
 - Accompanied by clear phase motion
 - Width presumably larger than $16 \,\mathrm{MeV}/c^2$

500 0**-→**ρK ACCMOR 400 $K^{-}\pi^{-}\pi^{+}$ from ACCMOR ≥ 300 MG< • Potential K(1630) signal already in ACCMOR analysis / 20 Events 200 100 1.00 1.20 1 40 1.60 1.80 Mκππ

Limited by kinematic range

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

$K^-\pi^-\pi^+$ from ACCMOR

• Potential K(1630) signal already in ACCMOR analysis

$K^{-}\pi^{-}\pi^{+}$ from LHCb

- ▶ Measurement of $D^0 \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ at LHCb
 - Study strange mesons in $K\pi\pi$ subsystem
 - MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above $1.6 \,\mathrm{GeV}/c^2$
 - Limited by kinematic range

$K^-\pi^-\pi^+$ from ACCMOR

• Potential K(1630) signal already in ACCMOR analysis

$K^{-}\pi^{-}\pi^{+}$ from LHCb

- ▶ Measurement of $D^0 \to K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ at LHCb
 - Study strange mesons in $K\pi\pi$ subsystem
 - MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above $1.6 \,\mathrm{GeV}/c^2$
 - Limited by kinematic range

Ar Agait

Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: K(1460) and K(1830) potentially quark-model states
 - Supernumerary state
 - \blacktriangleright K(1630) candidate for exotic non- $q\overline{q}$ state

Ar Agait

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: K(1460) and K(1830) potentially quark-model states
- ➡ Supernumerary state
- K(1630) candidate for exotic non- $q\overline{q}$ state

- Unexpected low-mass enhancement in 3⁺1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

$$\overline{I}_{a,b} = \int \mathsf{d}\varphi_3(\tau) \, \eta(\tau) \, \Psi_a(\tau) \Psi_b^*(\tau)$$

Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave

- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID

Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

• $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

Distinguishable only by

- Beam particle identification
- Final-state particle identification
- Excellent beam PID:
 - **Expect small contamination from beam** π^-
- Final-state PID does not suppress π⁻π⁻π⁺ background
 - ▶ Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7%
 - ⇒ Dominant background in $K^-\pi^-\pi^+$ sample

• $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

Distinguishable only by

- Beam particle identification
- Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- Final-state PID does not suppress π⁻π⁻π⁺ background
 - ▶ Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7 %
 - ⇒ Dominant background in $K^-\pi^-\pi^+$ sample

• $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

Distinguishable only by

- Beam particle identification
- Final-state particle identification
- Excellent beam PID:
 - **Expect small contamination from beam** π^-
- Final-state PID does not suppress π⁻π⁻π⁺ background
 - ▶ Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7%
 - ⇒ Dominant background in $K^-\pi^-\pi^+$ sample

- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- ► Final-state PID does not suppress π[−]π[−]π⁺ background
 - Non-negligible $\pi^{-}\pi^{-}\pi^{+}$ background in $K^{-}\pi^{-}\pi^{+}$ sample of about 7%
 - ▶ Dominant background in $K^-\pi^-\pi^+$ sample

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $\mathcal{K}^-\pi^-\pi^-$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi$
- Perform partial-wave decomposition of mis-interpreted π⁻π⁻π⁺ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^-$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^-$
- Perform partial-wave decomposition of mis-interpreted π⁻π⁻π⁺ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample

- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - ▶ Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted π⁻π⁻π⁺ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample
 - Study $\pi^{-}\pi^{-}\pi^{+}$ background in individual $K^{-}\pi^{-}\pi^{+}$ partial waves

Challenge

Need knowledge of isobar amplitude to calculate decay amplitudes $\Psi_a(\tau)$

How good are the parameterizations

Single isobar may not be approximated well by a Breit-Wigner amplitude

Effects of rescattering may distort the isobar shape

Challenge

Need knowledge of isobar amplitude to calculate decay amplitudes $\Psi(\tau)$

- How good are the parameterizations?
 - Single isobar may not be approximated well by a Breit-Wigner amplitude
 - Effects of rescattering may distort the isobar shape

$[\pi\pi]_S$ isobar amplitude

- Replace model for isobar amplitude with step-like amplitude
- Extract binned shape from data
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets

$[\pi\pi]_S$ isobar amplitude

6 5 Intensity 0 0.5 2.0 1.01.5 $m_{\pi^-\pi^+}$ [GeV/ c^2]

- Replace model for isobar amplitude with step-like amplitude
- Extract binned shape from data
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets

$[\pi\pi]_S$ isobar amplitude

6 5 Intensity $\mathbf{0}$ 2.0 0.5 1.01.5 $m_{\pi^-\pi^+}$ [GeV/ c^2]

- Replace model for isobar amplitude with step-like amplitude
- Extract binned shape from data
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets

$[\pi\pi]_S$ isobar amplitude

6 5 Intensity 1.5 2.0 0.5 1.0 $m_{\pi^-\pi^+}$ [GeV/ c^2]

- Replace model for isobar amplitude with step-like amplitude
- Extract binned shape from data
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets

$[\pi\pi]_S$ isobar amplitude

6 5 Intensity 1.5 2.0 0.5 1.0 $m_{\pi^-\pi^+}$ [GeV/ c^2]

- Replace model for isobar amplitude with step-like amplitude
- Extract binned shape from data
- Computationally more expensive
 - Up to 100 additional parameters per wave with freed isobar
- Needs large data sets

Example: $0^{-+} 0^+ [\pi \pi \ S$ -wave] $\pi \ S$ wave

- Comparison of $0^{-+} 0^+ [\pi \pi S$ -wave] πS wave intensity between
 - sum of all conventional isobar waves
 - freed-isobar method
- Compatible shapes
- \blacktriangleright $\pi(1800)$ peak prominent

Example: $0^{-+} 0^+ [\pi \pi S \text{-wave}] \pi S$ wave

- Comparison of 0⁻⁺ 0⁺ [ππ S-wave] π S wave intensity between
 - sum of all conventional isobar waves
 - freed-isobar method
- Compatible shapes
- $\pi(1800)$ peak prominent

This is not a Dalitz-plot

- ▶ No constrains on $\pi\pi$ resonances
- Extract $\pi\pi$ amplitude (intensity & phase)
 - Extract $\pi\pi$ resonances
- Investigate effects of rescattering

This is not a Dalitz-plot

Freed-Isobar Method: $0^{-+} 0^{+} [\pi \pi]_{0^{+}+} \pi S$

This is not a Dalitz-plot

Freed-Isobar Method: $0^{-+} 0^{+} [\pi \pi]_{0^{+}+} \pi S$

This is not a Dalitz-plot

Freed-Isobar Method Freed-Isobar Method: $0^{-+} 0^{+} [\pi \pi]_{0^{+}+} \pi S$

This is not a Dalitz-plot

Freed-Isobar Method: $0^{-+} 0^+ [\pi \pi]_{0^++} \pi S$

This is not a Dalitz-plot

Freed-Isobar Method: $0^{-+} 0^+ [\pi \pi]_{0^++} \pi S$

Freed-Isobar Method: $0^{-+} 0^+ [\pi\pi]_{0^+} \pi S$

Freed-Isobar Method: $0^{-+} 0^+ [\pi \pi]_{0^+} \pi S$

[Adolph et al., PRD 95, 032004 (2017)] 74+ Ay >it

• Total intensity in one $(m_{3\pi}, t')$ -bin as function of phase-space variables $\vec{\tau}$:

$$\mathcal{I}(ec{ au}) = \left|\sum_{i}^{ ext{waves}} \mathcal{T}_{i}\left[\psi_{i}\left(ec{ au}
ight)\Delta_{i}\left(m_{\pi^{-}\pi^{+}}
ight) + ext{Bose Symm.}
ight]
ight|^{2}$$

Fit parameters: Production amplitudes T_i

Fixed: Angular distributions $\psi_i(\vec{\tau})$, dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$

Replace fixed isobar amplitudes by piece-wise constant function:

$$\Delta_i \left(m_{\pi^- \pi^+}
ight)
ightarrow \sum_{ ext{bins}} \mathscr{T}_i^{ ext{bin}} \Delta_i^{ ext{bin}} \left(m_{\pi^- \pi^+}
ight) \equiv egin{bmatrix} \pi \pi \end{bmatrix}_{J^{PC}} \Delta_i^{ ext{bin}} \left(m_{\pi^- \pi^+}
ight) = egin{cases} 1, & ext{if } m_{\pi^- \pi^+} & ext{in the bin.} \ 0, & ext{otherwise.} \end{cases}$$

• Each $m_{\pi^-\pi^+}$ bin behaves like an independent partial wave $\mathcal{T}_i^{\text{bin}} = \mathcal{T}_i \mathscr{T}_i^{\text{bin}}$:

$$\mathcal{I}\left(\vec{\tau}\right) = \left|\sum_{i}^{\text{waves bins}} \sum_{\text{bin}}^{\text{bin}} \mathcal{T}_{i}^{\text{bin}}\left[\psi_{i}\left(\vec{\tau}\right) \Delta_{i}^{\text{bin}}\left(m_{\pi^{-}\pi^{+}}\right) + \text{Bose Symm.}\right]\right|^{2}$$

• Approach similar to binning in $m_{3\pi}$

- Extend freed-isobar wave set
- Free isobar dynamic amplitudes of 11 biggest waves:
 - Minimize potential leakage

Freed-isobar wave set

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F \end{array}$$

- Extend freed-isobar wave set
- Free isobar dynamic amplitudes of 11 biggest waves:
 - Minimize potential leakage
- Add spin exotic $1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P$ wave
 - Wave of major interest
- 12 freed-isobar waves replace 16 fixed-isobar waves
- In addition 72 fixed-isobar waves in the model
- 40 MeV wide $m_{3\pi}$ bins from 0.5 to 2.5 GeV
- 4 non-equidistant bins in t'
- 50 bins in $m_{3\pi}$, 4 bins in t': 4 × 50 = 200 independent bins

- Freed-isobar analysis: much more freedom than fixed-isobar analysis
 - Causes continuous mathematical ambiguities in the model
- "Zero mode" = dynamic isobar amplitude $\Omega(m_{\pi^-\pi^+})$, that does not contribute to the **total** amplitude
- Spin-exotic wave:

$$\psi(\vec{\tau}) \Omega(m_{\pi^-\pi^+}) + \text{Bose Symm.} = 0$$

at every point $\vec{\tau}$ in phase space

- Process: $X^- \to \xi \pi_3^- \to \pi_1^- \pi_2^+ \pi_3^-$.
- Condition for zero mode at all points $\vec{\tau}$ in phase-space:

$$\psi\left(\vec{\tau}_{123}\right)\Omega\left(m_{12}\right) + \text{Bose Symm.} = 0 \tag{1}$$

• Tensor formalism with pion momenta defined in the X^- rest frame:

 $\psi\left(ec{ au}_{ extsf{123}}
ight) \propto ec{oldsymbol{
ho}}_{ extsf{1}} imes ec{oldsymbol{
ho}}_{ extsf{3}}$

• Bose symmetrization $(\pi_1^- \leftrightarrow \pi_3^-)$:

$$ec{p}_{1} imes ec{p}_{3} \,\Omega\left(m_{12}
ight) + ec{p}_{3} imes ec{p}_{1} \,\Omega\left(m_{23}
ight) = ec{p}_{1} imes ec{p}_{3} \left[\Omega\left(m_{12}
ight) - \Omega\left(m_{23}
ight)
ight]$$

- Fulfill eq. (1) at every point in phase space $\Rightarrow \Omega(m_{\xi}) = \text{const.}$
- If Ω (m_ξ) is added to the physical dynamic isobar amplitude Δ^{phys} (m_ξ), the total amplitude, and thus the intensity, is not altered:

$$\left|\psi\left(\vec{\tau}\right)\Delta^{\mathrm{phys}}\left(m_{\xi}\right)+\mathrm{B.~S.}\right|^{2}=\left|\psi\left(\vec{\tau}\right)\left[\Delta^{\mathrm{phys}}\left(m_{\xi}\right)+\mathcal{C}\Omega\left(m_{\xi}\right)\right]+\mathrm{B.~S.}\right|^{2}$$

for any complex-valued zero-mode coefficient $\ensuremath{\mathcal{C}}$

• C: complex-valued ambiguity in the model

Fabian Krinner	(TUM)	
----------------	-------	--

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian F	(rinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15
Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15

Effects on dynamic isobar amplitudes

$$\Delta_{\mathsf{BW}}(m_{\pi^{-}\pi^{+}}) + C\Omega(m_{\pi^{-}\pi^{+}})$$

$$\mathcal{C} = -0.33 + 0.24i$$
(2)

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

$$\Delta_{\rm BW} (m_{\pi^-\pi^+}) + C\Omega (m_{\pi^-\pi^+})$$

$$C = -0.49 + 0.08i$$
(2)

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 1	5

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	11 / 15

Effects on dynamic isobar amplitudes

Echion Krinner (TUM)	Extended Exced Jacker DWA	Con 07th 2017 11/15
	Extended Freed-Isobal PWA	Sep 27 2017 11/15

Effects on dynamic isobar amplitudes

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017 11 / 15

- Now for $m_{\pi^-\pi^+}$ bins: $\vec{\mathcal{T}}^0 = \{\Omega(m_{\mathrm{bin}})\}$ for all $m_{\pi^-\pi^+}$ bins
- The fitting algorithm might find a solution, shifted away from the physical solution $\vec{\mathcal{T}}^{\rm phys}$:

 $\vec{\mathcal{T}}^{\rm phys} = \vec{\mathcal{T}}^{\rm fit} + \mathcal{C}\vec{\mathcal{T}}^0$

- Obtain physical solution: constrain ${\cal C}$ by conditions on the resulting dynamic amplitudes $\vec{\cal T}^{\rm fit}$
- In the case of the $1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P$ wave:
 - use the Breit-Wigner for the ρ (770) resonance with fixed resonance parameters as in the fixed-isobar analysis
 - use a Breit-Wigner for the ρ (770) resonance with floating resonance parameters
- Final results: weighted average of these two methods
- **Note:** Resolving the ambiguity fixes only a single complex-valued degree of freedom. *n*_{bins} 1 complex-valued degrees of freedom remain free.

Fabian Krinner (TUM)	Extended Freed-Isobar PWA	Sep 27 th 2017	12 / 15

The spin-exotic wave

ТШТ

• Example: Single $(m_{3\pi}, t')$ bin

- ► $1.58 < m_{3\pi} < 1.62 \, {\rm GeV}/c^2$
- $0.326 < t' < 1.000 (\text{GeV}/c)^2$
- Zero-mode ambiguity resolved with ρ (770) used as constraint

Freed-Isobar Analysis

 $J^{PC} = 1^{-+}$ Wave with freed $j^{pc} = 1^{--}$ Isobar Amplitude

- Study $\pi^-\pi^+$ amplitude as a function of $m_{3\pi}$
- $m_{\pi^-\pi^+}$ spectrum shows good agreement with $\rho(770)$ Breit-Wigner
- Extract $m_{\pi^-\pi^+}$ dependence of complex-valued amplitude
- Shape of $m_{3\pi}$ spectrum is in fair agreement with fixed-isobar analysis
 - \Rightarrow $\pi_1(1600)$ signal at about 1.6 GeV/ c^2 robust

- Study $\pi^-\pi^+$ amplitude as a function of $m_{3\pi}$
- $m_{\pi^-\pi^+}$ spectrum shows good agreement with $\rho(770)$ Breit-Wigner
- Extract $m_{\pi^-\pi^+}$ dependence of complex-valued amplitude
- **b** Shape of $m_{3\pi}$ spectrum is in fair agreement with fixed-isobar analysis
 - $\Rightarrow \pi_1(1600)$ signal at about 1.6 GeV/ c^2 robust

- Study $\pi^-\pi^+$ amplitude as a function of $m_{3\pi}$
- $m_{\pi^-\pi^+}$ spectrum shows good agreement with $\rho(770)$ Breit-Wigner
- Extract $m_{\pi^-\pi^+}$ dependence of complex-valued amplitude
- Shape of $m_{3\pi}$ spectrum is in fair agreement with fixed-isobar analysis
 - $\pi_1(1600)$ signal at about 1.6 GeV/ c^2 robust