Finite angle effects in jet quenching

Miguel A. Escobedo

Instituto Galego de Física de Altas Enerxías
Universidade de Santiago de Compostela

August 4, 2022

Work done in collaboration with Carlos Salgado and Manoel Rodríguez. To be published soon.
Outline

1. Introduction
2. Setting of the problem
3. Computation
4. Results and discussion
Difficulties in heavy ion collisions

Pb+Pb @ sqrt(s) = 2.76 ATeV
2010-11-08 11:30:46
Fill : 1482
Run : 137124
Event : 0x00000000D3BBE693
Difficulties in heavy ion collisions

- We want to understand QGP.
Difficulties in heavy ion collisions

- We want to understand QGP.
- This is just one of the many stages that takes place in heavy ion collisions.
Difficulties in heavy ion collisions

- We want to understand QGP.
- This is just one of the many stages that takes place in heavy ion collisions.
- At the end what we see in the detectors is the same type of particles as in proton-proton collisions, but a lot of them.
Hard probes in heavy ion collisions

Probes that are created at the beginning of the collision (typically because its creation needs a high energy) that get modified in a substantial way and that are relatively easy to detect.

- Jet quenching.
- Heavy quark diffusion.
- Quarkonium suppression.
- Photon production.

Picture taken from d’Enterria (2007)
Jet quenching

- It is a measure of the opacity of the medium to boosted particles.
- Its strength depends on a transport coefficient called \hat{q}.
Jet substructure

Recently developed techniques to characterize the internal structure of the jet. For example, re-cluster jets inside the jet.
Jet substructure studies are useful because it allows to select observables that test the medium at different energy scales.
Jet substructure studies are useful because it allows to select observables that test the medium at different energy scales. We need to understand how jet quenching depends on the angle between high energy partons.
Jet substructure

- Jet substructure studies are useful because it allows to select observables that test the medium at different energy scales.
- We need to understand how jet quenching depends on the angle between high energy partons.
- In the vacuum we have angular ordering. What do we have when the jet is inside of a medium?
Jet substructure

- Jet substructure studies are useful because it allows to select observables that test the medium at different energy scales.
- We need to understand how jet quenching depends on the angle between high energy partons.
- In the vacuum we have angular ordering. What do we have when the jet is inside of a medium?
- The antenna configuration is a simple system in which we can try to understand these issues.
Jet antenna, small angle
Mehtar-Tani, Salgado and Tywoniuk, 2011 and 2012; Calderrey-Solana and Iancu, 2011

- The separation between the quark and the antiquark is always smaller than the medium resolution scale.
- From the point the view of the medium, it if as if the photon never split. Therefore, medium effects are suppressed.
Soon after the splitting the medium sees the quark and the antiquark as very far apart.

They interact with the medium in a completely uncorrelated way. Loss of coherence \rightarrow No angular ordering.
Motivation

- Previous results considered LO in the small angle limit. What happens when the angle is larger?
Motivation

- Previous results considered LO in the small angle limit. What happens when the angle is larger?
- We want to improve on this by computing the first finite angle corrections (still assuming that the angle is small).
Motivation

- Previous results considered LO in the small angle limit. What happens when the angle is larger?
- We want to improve on this by computing the first finite angle corrections (still assuming that the angle is small).
- It was assumed that the daughter partons follow the same light-cone direction as the mother parton.
Motivation

- Previous results considered LO in the small angle limit. What happens when the angle is larger?
- We want to improve on this by computing the first finite angle corrections (still assuming that the angle is small).
- It was assumed that the daughter partons follow the same light-cone direction as the mother parton.
- Now we are going to consider that each resulting parton follows a different light-cone direction.
Emission after the medium

We focus on the simple scenario of a pair of quark-antiquark created from a photon that radiate a high energy gluon after traversing the medium.
Approximations

We use approximations common in the literature.
Approximations

We use approximations common in the literature

- The large N_c limit.
We use approximations common in the literature

- The large N_c limit.
- Classical limit. The gauge fields are equal in the amplitude and in the complex conjugate.
Approximations

We use approximations common in the literature

- The large N_c limit.
- Classical limit. The gauge fields are equal in the amplitude and in the complex conjugate.
- The eikonal approximation.
Approximations

We use approximations common in the literature

- The large N_c limit.
- Classical limit. The gauge fields are equal in the amplitude and in the complex conjugate.
- The eikonal approximation.
- We focus on the medium influence and consider a static QCD brick. Chromoelectric and chromomagnetic fields outside of the medium vanish. Therefore, the gauge field is a pure gauge outside of the medium.
Large N_c Self-energy

\[\begin{array}{c}
0 & L & 0 \\
\leftarrow & \rightarrow \\
L & \rightarrow & L \\
\leftarrow & \rightarrow \\
0 & L & 0
\end{array} \]
Classical limit

Self-energy

Wilson lines cancel out. No thermal effects.
Large N_c

Crossed term
Classical limit

Crossed term
A_μ is a pure gauge in the vacuum

Amplitude. Complex conjugate amplitude.
In summary

Thermal effects are encoded (in the large N_c limit) in the modulus square of

\[0 \quad L \]
In summary

The contribution from the interference term is multiplied by Δ_{med} and that contains all medium effects.

$$\Delta_{med} = 1 - \frac{1}{N_c^2} \langle \text{Tr} e^{ig \oint dl \cdot A} \rangle^2$$

where the contour is the previous triangle. Quark (antiquark) goes around light-cone direction n_1 (n_2).
In summary

The contribution from the interference term is multiplied by Δ_{med} and that contains all medium effects.

$$\Delta_{med} = 1 - \frac{1}{N_c^2} \left< \text{Tr} e^{ig \oint dl \cdot A} \right>^2$$

where the contour is the previous triangle. Quark (antiquark) goes around light-cone direction n_1 (n_2).

Previous literature

$$\Delta_{med} = 1 - \frac{1}{N_c^2} \left< \text{Tr} U_1(L^+, 0) U_2^\dagger(L^+, 0) \right>^2,$$

where

$$U_i(x^+, 0) = \mathcal{P}_+ \exp \left[ig \int_0^{x^+} d\tau n \cdot A \left(n\tau + \frac{k_i, \perp \tau}{\sqrt{2E_i}} \right) \right]$$

n is the light-cone direction of the parent photon.
Differences with previous studies

- We take into account the gauge field component perpendicular to \(n \) (photon direction).
Differences with previous studies

- We take into account the gauge field component perpendicular to \(n \) (photon direction).
- We have an additional vertical line in the border of the medium. Analogous to Aharonov-Bohm effect.
Differences with previous studies

- We take into account the gauge field component perpendicular to n (photon direction).
- We have an additional vertical line in the border of the medium. Analogous to Aharonov-Bohm effect.
- Manifestly gauge invariant.
Differences with previous studies

- We take into account the gauge field component perpendicular to n (photon direction).
- We have an additional vertical line in the border of the medium. Analogous to Aharonov-Bohm effect.
- Manifestly gauge invariant.
- At LO in the small angle limit we get the same result.
Eikonal approximation

We assume that the quark (antiquark) moves eikonally with direction n_1 (n_2).

$$n_1 n_2 = \frac{1}{2} (1 - \cos \theta) \sim \frac{\theta^2}{4},$$

where $\theta \ll 1$. We can define

$$n = \frac{n_1 + n_2}{2}$$

$$\delta n = n_1 - n_2$$
Eikonal approximation

We assume that the quark (antiquark) moves eikonally with direction n_1 (n_2).

$$n_1 n_2 = \frac{1}{2} (1 - \cos \theta) \sim \frac{\theta^2}{4},$$

where $\theta \ll 1$. We can define

$$n = \frac{n_1 + n_2}{2}$$

$$\delta n = n_1 - n_2$$

Note that...

- n is not a light-cone vector, but almost. $n^2 \sim \theta^2$.
- $n \delta n = 0$, therefore δn is a transverse vector with modulus of order θ.
We evaluate the triangle in perturbation theory using the Coulomb gauge.

Small θ limit

- Modes with energy T. First contribution enters at one loop.
- Modes with energy m_D. Computed using HTL.
Perturbation theory

We evaluate the triangle in perturbation theory using the Coulomb gauge.

Small θ limit
- Modes with energy T. First contribution enters at one loop.
- Modes with energy m_D. Computed using HTL.

First θ corrections
Modes with energy T at tree level.
Leading order

T modes. Tree level

Leading contribution is enhanced by powers of LT. This enhancement is only achieved for off-shell gluons. Therefore, tree level does not contribute at this order.
If $\mathcal{W} = \text{Tr} e^{ig \oint dl \cdot A}$, then it gives a contribution to $\log \langle \mathcal{W} \rangle$ of order

$$\alpha_s^2 T^3 L^3 \theta^2 = \alpha_s^2 TL(TL\theta)^2.$$
Leading order

m_D modes

It gives a contribution to $\log\langle W \rangle$ of order $\alpha_s T m_D^2 L^3 \theta^2 = \alpha_s^2 T L(T L \theta)^2$.

Leading order

\[T + m_D \]

\[
\log\langle W \rangle = -\frac{1}{4\sqrt{2}} \int_0^{L^+} d\tau_s \hat{q}(\delta n_{\perp \tau_s})(\delta n_{\perp \tau_s})^2
\]

which is of order \(\alpha_s^2 TL(TL\theta)^2 \). Note that we consider that \(\theta \) is small but \(TL \) is large. Therefore, we consider for the power counting that \(TL\theta \sim 1 \).
First corrections

- Off-shell gluons attached to the Wilson lines can get enhancement of order LT.

- Leading order effect is of order $\alpha_s (\theta)$.

- The contribution from on-shell gluons is not enhanced by LT but enters at tree level. It goes like $\alpha_s f(\theta)$.

- Sub-leading contribution of off-shell gluons can at most be of size $\alpha_s (\theta)^3 \ll \alpha_s$.

First corrections

- Off-shell gluons attached to the Wilson lines can get enhancement of order LT.
- Leading order effect is of order $\alpha_s^2 \mathcal{T}L(\mathcal{T}L\theta)^2$.
First corrections

- Off-shell gluons attached to the Wilson lines can get enhancement of order LT.
- Leading order effect is of order $\alpha_s^2 TL(TL\theta)^2$.
- The contribution from on-shell gluons is not enhanced by TL but enters at tree level. It goes like $\alpha_s f(TL\theta)$.
Off-shell gluons attached to the Wilson lines can get enhancement of order LT.

Leading order effect is of order $\alpha_s^2 TL(TL\theta)^2$.

The contribution from on-shell gluons is not enhanced by TL but enters at tree level. It goes like $\alpha_s f(TL\theta)$.

Sub-leading contribution of off-shell gluons can at most be of size $\alpha_s^2(TL\theta)^3 \ll \alpha_s$.

First corrections
First corrections. Diagrams I
It happens that the diagram on the left vanishes in the Coulomb gauge.
Results

\[\Delta_{med} = 1 - |\langle W \rangle|^2 \]
\[\log \langle W \rangle = g^2 C_F(W_2^{LO} + W_2^{NLO}) \]
\[W_2^{LO} = -\frac{1}{4\sqrt{2} g^2 C_F} \int_0^{L^+} d\tau_s \hat{q}(\delta n_{\perp}\tau_s)(\delta n_{\perp}\tau_s)^2 \]

We do not have a simple analytic expression for \(W_2^{NLO} \). For large \(\theta \)
\[W_2^{NLO} \sim -\frac{T L^+ \delta n}{4\pi} \left(\log(T L^+ \delta n) + \gamma_E \right) \]

and for small \(\theta \)
\[W_2^{NLO} \sim -\frac{T^2 \delta n^2 L^+}{18} \]
\[\delta n = \theta / \sqrt{2} \text{ and } L^+ = \sqrt{2}L. \]
W_2^{NLO} numerical
Discussion

- At LO the high energy partons only couple directly to space-like gluons. In other words, the interaction with medium particles can be encoded in a potential. At NLO this is no longer the case. No static scattering centres.
Discussion

- At LO the high energy partons only couple directly to space-like gluons. In other words, the interaction with medium particles can be encoded in a potential. At NLO this is no longer the case. No static scattering centres.

- Our results are compatible with previous literature as long as $\alpha_s LT \gg 1$. On-shell gluons have less suppression in α_s but no phase space enhancement (LT powers).
At LO the high energy partons only couple directly to space-like gluons. In other words, the interaction with medium particles can be encoded in a potential. At NLO this is no longer the case. No static scattering centres.

Our results are compatible with previous literature as long as $\alpha_s L T \gg 1$. On-shell gluons have less suppression in α_s but no phase space enhancement ($L T$ powers).

The interaction with the gauge fields after the medium ends up giving the vertical Wilson line. Can not be ignored at NLO. At this order, soft gluons after the medium matter.
Discussion

- At LO the high energy partons only couple directly to space-like gluons. In other words, the interaction with medium particles can be encoded in a potential. At NLO this is no longer the case. No static scattering centres.

- Our results are compatible with previous literature as long as $\alpha_s L T \gg 1$. On-shell gluons have less suppression in α_s but no phase space enhancement (LT powers).

- The interaction with the gauge fields after the medium ends up giving the vertical Wilson line. Can not be ignored at NLO. At this order, soft gluons after the medium matter.

- We can consistently add higher order corrections in θ in a manifestly gauge invariant way.