Aspects of chiral transition in a Hadron Resonance Gas Model

Deeptak Biswas

The Institute of Mathematical Sciences

Based on 2206.04579 [hep-ph]

In collaboration with Peter Petreczky, Sayantan Sharma

XVth Quark Confinement and the Hadron Spectrum Stavanger, August-2022

Table of Contents

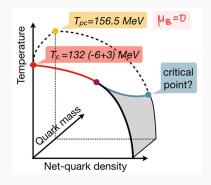
Introduction

Chiral Condensate in the Hadron Resonance Gas model

Renormalized definitions of chiral condensate

Results

HRG results of renormalized chiral condensate vs. LQCD


Curvature of the chiral crossover line from HRG model

Summary and outlook

Introduction

Motivation

- ➤ In QCD with 2 massless quarks, $SU(2)_{\nu} \times SU(2)_{A} \times U(1)_{\nu} \rightarrow \text{Exact symmetry}$
- ▶ With physical mass, $SU(2)_{\nu} \times SU(2)_{A} \times U(1)_{\nu} \rightarrow \text{Approximate}$ (good)
- ➤ This symmetry is spontaneously broken to $SU(2)_{\nu} \times U(1)_{\nu}$
- For 2 flavors at non-zero mass, the chiral symmetry is restored via analytic crossover at $T_c = 156.5(1.5)$ MeV. [HotQCD 2018]
- Mow far can we estimate T_c and pseudo-critical line in Hadron Resonance Gas(HRG) model?

Chiral Condensate in the Hadron

Resonance Gas model

Earlier results from χ_{PT} and HRG:

The earliest estimation of pseudo-critical temperature, done within the NNLO chiral perturbation theory(χ_{PT}) gave $T_c = 250 \text{ MeV}$.

```
[P. Gerber, H. Leutwyler 1989]
```

- Lowered to about 190 MeV with inclusion of heavier hadrons.
- Recent studies within the HRG have found a higher $T_c \sim 170$ MeV.

[J. Jankowski et al. 2013, A. N Tawfik, N. Magdy 2015]

Renormalized chiral condensate

We can define the renormalized chiral condensate from the pressure as,

$$-m_{s}\left[\langle\bar{\psi}\psi\rangle_{I,T}-\langle\bar{\psi}\psi\rangle_{I,0}\right]=-m_{s}\frac{\partial P}{\partial m_{I}}$$

The normalization is not unique [BMW 2010],

$$\langle \bar{\psi}\psi \rangle_R = -\frac{m_I}{m_\pi^4} \left[\langle \bar{\psi}\psi \rangle_{I,T} - \langle \bar{\psi}\psi \rangle_{I,0} \right] .$$

A natural choice for dimensionless condensate [HotQCD 2012],

$$\Delta_{R}^{I} = d + m_{s} r_{1}^{4} \left[\langle \bar{\psi}\psi \rangle_{I,T} - \langle \bar{\psi}\psi \rangle_{I,0} \right]$$

Using low energy constant of SU(2) χ_{PT} , $\Sigma^{1/3} = 272(5)$ MeV, $m_s = 92.2(1.0)$ MeV, and $r_1 = 0.3106$ fm, one gets d = 0.022791. [FLAG 2022],

Chiral condensate in HRG model

The renormalized chiral condensate,

$$m_{s} \frac{\partial P}{\partial m_{l}} = -\frac{m_{s}}{m_{l}} \sum_{\alpha} \frac{g_{\alpha}}{2\pi^{2}} \int_{0}^{\infty} dp \ p^{2} \ n_{\alpha} \ (E_{\alpha}) \frac{1}{2E_{\alpha}} m_{l} \frac{\partial M_{\alpha}^{2}}{\partial m_{l}}.$$

The non-trivial ingredient is $\frac{\partial M_{\alpha}^2}{\partial m_l}$.

Pseudoscalar ground states

From SU(2) χ_{PT} ,

$$M_{\pi}^2 = M^2 \left[1 - \frac{1}{2} \zeta \ \bar{l}_3 + \mathcal{O}(\zeta^2) \right] \ , \ \zeta = \frac{M^2}{16\pi^2 F_{\pi}^2}$$

Kaon properties are predicted well from $2+1 \chi_{PT}$ [RBC 2014, Durr 2015]

$$M_K^2 = B_K(m_s)m_s \left[1 + \frac{\lambda_1(m_s) + \lambda_2(m_s)}{F^2}M^2\right]$$

 $M^2 = 2Bm_I, B = \Sigma/F^2$

From LQCD the pion mass is consistent with LO result $M_\pi^2 \approx 2Bm_I$. [RQCD Bali et al. 2016] .

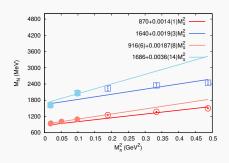
Sigma terms for Heavier hadrons

$$\Rightarrow \sigma_{\alpha} = m_{l} \frac{\partial M_{\alpha}}{\partial m_{l}} |_{m_{l} = m_{l}^{phys}} = m_{l} \langle \alpha | \bar{u}u + \bar{d}d | \alpha \rangle = M_{\pi}^{2} \frac{\partial M_{\alpha}}{\partial M_{\pi}^{2}} |_{M_{\pi} = M_{\pi}^{phys}}.$$

N	٨	Σ	Ξ
44(3)(3)	31(1)(2)	25(1)(1)	15(1)(1)
Δ	Σ*	Ξ*	Ω^{-}
29(9)(3)	18(6)(2)	10(3)(2)	5(1)(1)

The sigma terms of ground state baryons have been only recently calculated with precision. [Copeland et al. 2021] .

New development from our work:

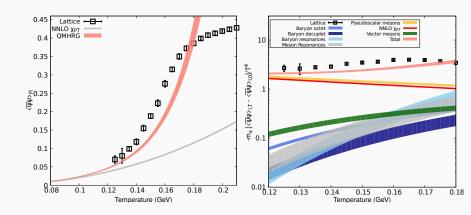

- We have done extensive compilation of the LQCD results to find $M_{\pi}^2 \frac{\partial M_{\alpha}}{\partial M_{\pi}^2}$ at a constant m_s , set at the physical value.
- For the first time, σ terms for η , $\rho(770)$, $K^*(892)$, and η' have been calculated from LQCD data.

```
[RQCD Bali et al. 2016, D. Guo et al. 2016, RQCD Bali et al. 2021] .
```

- We have assigned sigma terms for all meson resonances,
 - Iso-vector mesons $o \sigma_{
 ho(770)}$
 - Open strange mesons $\rightarrow \sigma_{K^*(892)}$.
 - \bullet Iso-scalar mesons \to corresponding ground states mesons σ terms.
- $f_0(500)$ is not considered as cancellation by the repulsive interactions [Broniowski et al. 2015].

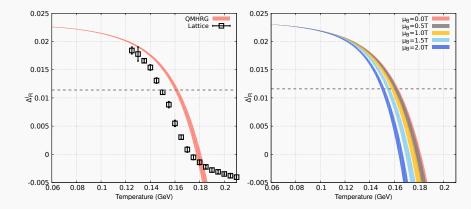
Sigma terms for Baryon resonances: Nucleons

- It is difficult to measure baryon resonances in LQCD as they are close to the scattering state and resonances.
- For the excited N state, the fit to 2+1 flavor LQCD data gives $\sigma = 68(27)$ MeV.
- Within large errors is consistent with the sigma term of its ground state.



Sigma terms for Baryon resonances

- \blacktriangleright We have considered the σ terms for all resonances (even for strange baryons) to be same as the ground state.
- ➤ To reliably account for large uncertainty in σ of high mass resonances, we have taken the relative errors in the σ -terms of excited states to be 50%.
- ➤ However such large uncertainty contributes to only 10% of the total error in the renormalized chiral condensate as the dominant contribution comes from ground state pseudo-scalar mesons.

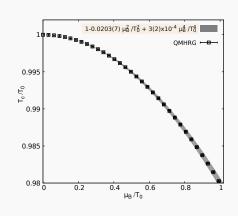

Results

Chiral condensate: LQCD vs. HRG model

HRG model calculations are consistent with LQCD continuum estimates till $T{\sim}\ 140 \text{MeV}.$

$$\Delta_R^I = d + m_s r_1^4 \left[\langle \bar{\psi} \psi \rangle_{I,T} - \langle \bar{\psi} \psi \rangle_{I,0} \right]$$

- On the lattice Δ_R^I goes to half of its low-temperature value at T_c .
- ullet We use this fact to estimate T_c from our HRG model calculations.

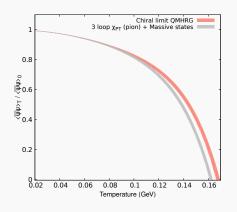

Summary of results

- > Our improved HRG calculation gives $T_c = 161.2 \pm 1.7$ MeV at $\mu_B = 0$.
- ightharpoonup Lattice QCD results on T_c in the continuum limit, $T_c=156.5\pm1.5~{
 m MeV}~{
 m [HotQCD~2018,~BMW~2020]}$

Curvature of the pseudo-critical line

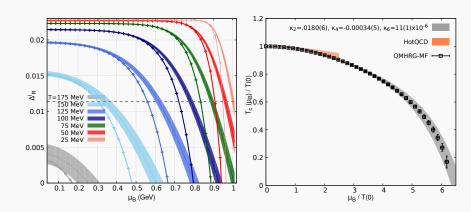
We extract κ_2 and κ_4 by fitting $T_c(\mu_B)$ for $0 < \mu_B/T_c(\mu_B = 0) < 1$.

- Our estimation $\kappa_2 = 0.0203(7)$.
- $\kappa_4 = -3(2) \times 10^{-4}$ is quite noisy.
- h Highlight that our results are in very good agreement with LQCD estimates of $\kappa_2 = 0.012(4)$ [HotQCD 2018] and 0.0153(18) [BMW 2020], $\kappa_4 = 0$.



Transition in the chiral limit

lacktriangleright 3-loop χ_{PT} for pions + hadrons, gave a $T_c^0 \sim 170$ MeV .


[P. Gerber, H. Leutwyler 1989]

- ⇒ 3-loop χ_{PT} + our improved HRG estimates lower it to 162 MeV.
- LQCD predicts $T_c = 132^{+3}_{-6}$ MeV [HotQCD 2019].

Extending our results to higher baryon density

For high density, we need to include repulsive interaction among baryons via mean field. [Huovinen, Petreczky 2018]

Summary and outlook

Summary and outlook

- We have studied chiral observables for physical hadrons within the HRG model.
- \nearrow For the first time, precise values of σ terms for ρ, η, K^* , isoscalar mesons and ground state baryons have been included.
- This has successfully improved the T_c from HRG model, bringing it closer to the LQCD estimates.
- \checkmark Curvature coefficients κ_2 , κ_4 are very close to lattice results than previous estimates.
- ightharpoonup With these excellent agreements at $\mu_B \approx 0$, we have extended our formalism to larger values of μ_B . [P.Petreczky, to appear]