

European Research Council Established by the European Commission

Bayesian analysis improvements in the light of the new LHC measurements

Seyed Farid Taghavi

Dense & Strange Hadronic Matter Group, Technical University of Munich, Germany

J.E. Parkkila, A. Önnerstad, C. Mordasini, A. Bilandzic, D.J. Kim

XIVth Quark Confinement and the Hadron Spectrum University of Stavange, Stavange, Norway 1-6 August, 2022

State-of-the-art heavy-ion collision models

$$\frac{d^2N}{p_T dp_T d\varphi} = N(p_T) \left[1 + \sum_{n=1}^{\infty} 2\boldsymbol{\nu}_n \cos\left[n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n)\right]\right]$$

Flow harmonics, (v_n, ψ_n) , depend on the initial state parameters, transport coefficients $(\eta/s, \zeta/s, ...), ...$

 $(\varepsilon_n^{(1)}, r_{rms}^{(1)}, \ldots)$

collective evolution

$$\frac{d^2N}{p_T dp_T d\varphi} = N(p_T) \left[1 + \sum_{n=1}^{\infty} 2 \boldsymbol{\nu}_n \cos\left[n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n)\right]\right]$$

Flow harmonics, (v_n, ψ_n) , depend on the initial state parameters, transport coefficients $(\eta/s, \zeta/s, ...), ...$

collective evolution $(v_n^{(1)}, \psi_n^{(1)})$

 $(\varepsilon_n^{(1)}, r_{\rm rms}^{(1)}, \ldots)$

$$\frac{d^2N}{p_T dp_T d\varphi} = N(p_T) \left[1 + \sum_{n=1}^{\infty} 2\boldsymbol{\nu}_n \cos\left[n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n)\right]\right]$$

Flow harmonics, (v_n, ψ_n) , depend on the initial state parameters, transport coefficients $(\eta/s, \zeta/s, ...), ...$

collective evolution $(v_n^{(2)}, \psi_n^{(2)})$

 $(\varepsilon_n^{(2)}, r_{\mathsf{rms}}^{(2)}, \ldots)$

$$\frac{d^2N}{p_T dp_T d\varphi} = N(p_T) \left[1 + \sum_{n=1}^{\infty} 2 \boldsymbol{\nu}_n \cos\left[n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n)\right]\right]$$

Flow harmonics, (v_n, ψ_n) , depend on the initial state parameters, transport coefficients $(\eta/s, \zeta/s, ...), ...$

$$\frac{d^2 N}{p_T dp_T d\varphi} = N(p_T) \left[1 + \sum_{n=1}^{\infty} 2 \boldsymbol{\nu}_n \cos\left[n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n)\right] \right]$$

Flow harmonics, (v_n, ψ_n) , depend on the initial state parameters, transport coefficients $(\eta/s, \zeta/s, ...), ...$

$$p([p_T], v_n, \psi_n, \ldots)$$

$$\frac{d^2 N}{p_T dp_T d\varphi} = N(p_T) \left[1 + \sum_{n=1}^{\infty} 2 \boldsymbol{\nu}_n \cos\left[n(\boldsymbol{\varphi} - \boldsymbol{\psi}_n)\right] \right]$$

Flow harmonics, (v_n, ψ_n) , depend on the initial state parameters, transport coefficients $(\eta/s, \zeta/s, ...), ...$

$$p([p_T], v_n, \psi_n, \ldots)$$

Concentrate on a single harmonic flow amplitude $p(v_n)$,

$$v_n\{2\} \equiv (\langle v_n^2 \rangle)^{1/2}, \qquad v_n\{4\} \equiv \left(-\langle v_n^4 \rangle + 2\langle v_n^2 \rangle^2\right)^{1/4},$$

. . .

[Borghini, Dinh, Ollitrault, PRC, 64, 054901 (2001)]

Theoretical models Vs experimental data

Initial state parameters

$N(\sqrt{s_{NN}})$	Overall normalization
p	Entropy deposition parameter
w	Gaussian nucleon width
	•

Pre-equilibrium parameters

$ au_{ m fs}$	Free-streaming time	
	•	
	•	

QGP evolution parameters

$\eta/s(T_c)$	Minimum $\eta/s(T)$
$(\eta/s)_{\text{slope}}$	Slope of $\eta/s(T)$ above T_c
$(\eta/s)_{ m curve}$	Curvature of $\eta/s(T)$ above T_{d}

Hadronic gas evolution parameters

Experimental observables

lN∕dy	Particle yields, π^{\pm} , k^{\pm} ,
$ p_T\rangle$	Mean transverse momentum, $\pi^{\pm}, k^{\pm}, \ldots$
$v_n\{2\}$	Anisotropic flow two-particle correlation
$v_n{4}$	Anisotropic flow four-particle correlation

- What is the optimal value for the parameters to reproduce the experimental data, and how can we improve it?
- How much the models are applicable in small systems (Pb-Pb, Xe-Xe, ..., O-O, ..., Pb-p, p-p)?

c

Model in the light of experimental data

- ► The initial the degree of belief to model parameters, *prior* distribution: *P*(theory)
- Likelihood: P(Data|Theory)
- Updated belief in the light of data. posterior distribution: P(Theory|Data).

Bayes's theorem: $P(Theory|Data) \propto P(Data|Theory)P(Theory)$

Theoretical developments: collectivity [2], jet-quenching [3], nucleon substructure [4]

Bernhard, PhD Thesis, arXiv: 1804.06469; Bernhard, Moreland, Bass, Nature Phys. 15 (2019) 11, 1113-1117
 Auvinen, et al., PRC 102 (2020) 044911, Nijs et al., PRL 126 (2021) 202301, JETSCAPE, PRC 103 (2021) 054904
 JETSCAPE, PRC 104 (2021), 024905
 Mäntysaari, Schenke, Shen, Zhao, arXiv: 2202.01998

Many new measurements

Observable

Single-harmonic observables [1, 2]	$v_2\{2\}, \ldots, v_7\{2\}$
Symmetric cumulants [3]	NSC(2,3),NSC(2,4),NSC(3,4)
Higher-order symmetric cumulants [4]	NSC(2,3,4), $NSC(2,3,5)$
Symmetry plane correlations [2,5]	$\rho_{4,22}, \rho_{5,23}, \rho_{6,222}, \rho_{6,33}$
Non-linear mode couplings [2,6]	X4,22, X5,23, X6,222, X6,33
Symmetry plane correlation (GE) [7]	$\langle \cos(4\psi_2 - 4\psi_4) \rangle_{GE}, \ldots$
Asymmetric cumulants [8]	$AC_{2,1}(m,n), \ldots$

$$\mathsf{NSC}(m,n) = \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle}, \quad \chi_{4,22} = \frac{\langle v_2^2 v_4 \cos(4\psi_2 - 4\psi_4) \rangle}{\langle v_2^4 \rangle}, \qquad \dots$$

[1] Borghini, et al., PRC 64 (2001) 054901, ALICE Collaboration, PRL, 107 (2011) 032301, ALICE Collaboration, PRL, 116 (2016) 13, 132302.

[2] ALICE Collaboration, JHEP 05 (2020) 085, ALICE Collaboration, 773 (2017) 68-80.

[3] Bilandzic, et al., PRC 89 (6) (2014) 064904, ALICE Collaboration, PRC 97 (2018) 2, 024906, PRL, 117 (2016) 182301.

- [4] Mordasini, et al., PRC 102 (2) (2020) 024907, ALICE Collaboration, PRL, 127 (2021) 9, 092302.
- [5] Bhalerao, et al., PLB, 742 (2015) 94-98, Yan, et al. PLB, 744 (2015) 82-87.
- [6] Qiu, et al., PLB, 717 (2012) 261-265, ATLAS Collaboration, PRC, 90 (2014) 2, 024905.
- [7] A. Bilandzic, M. Lesch, SFT, PRC 102, 024910 (2020)
- [8] A. Bilandzic, M. Lesch, C. Mordasini, SFT, PRC 105, 024912 (2022)

Many new measurements

Observable

Single-harmonic observables [1, 2] v_2 {2}, ..., v_7 {2}Symmetric cumulants [3]NSC(2,3), NSC(2,4), NSC(3,4)Higher-order symmetric cumulants [4]NSC(2,3,4), NSC(2,3,5)Symmetry plane correlations [2,5] $\rho_{4,22}$, $\rho_{5,23}$, $\rho_{6,222}$, $\rho_{6,33}$ Non-linear mode couplings [2,6] $\chi_{4,22}$, $\chi_{5,23}$, $\chi_{6,222}$, $\chi_{6,33}$ Symmetry plane correlation (GE) [7] $\langle \cos(4\psi_2 - 4\psi_4) \rangle_{GE}$, ...Asymmetric cumulants [8] $AC_{2,1}(m,n), \ldots$

$$\mathsf{NSC}(m,n) = \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle}, \quad \chi_{4,22} = \frac{\langle v_2^2 v_4 \cos(4\psi_2 - 4\psi_4) \rangle}{\langle v_2^4 \rangle},$$

[1] Borghini, et al., PRC 64 (2001) 054901, ALICE Collaboration, PRL, 107 (2011) 032301, ALICE Collaboration, PRL, 116 (2016) 13, 132302.

[2] ALICE Collaboration, JHEP 05 (2020) 085, ALICE Collaboration, 773 (2017) 68-80.

[3] Bilandzic, et al., PRC 89 (6) (2014) 064904, ALICE Collaboration, PRC 97 (2018) 2, 024906, PRL, 117 (2016) 182301.

- [4] Mordasini, et al., PRC 102 (2) (2020) 024907, ALICE Collaboration, PRL, 127 (2021) 9, 092302.
- [5] Bhalerao, et al., PLB, 742 (2015) 94-98, Yan, et al. PLB, 744 (2015) 82-87.
- [6] Qiu, et al., PLB, 717 (2012) 261-265, ATLAS Collaboration, PRC, 90 (2014) 2, 024905.
- [7] A. Bilandzic, M. Lesch, SFT, PRC 102, 024910 (2020)
- [8] A. Bilandzic, M. Lesch, C. Mordasini, SFT, PRC 105, 024912 (2022)

Transport properties of QGP

 $T_R ENTo \otimes \ Free-streaming \otimes VISH2+1 \otimes UrQMD$

 Bernhard, et al., Nature Phys. 15 (2019) 11, 1113-1117.
 J.E. Parkkila, A. Onnerstad, D.J. Kim, Phys.Rev.C 104 (2021) 5, 054904.
 J.E. Parkkila, A. Onnerstad, SFT, C. Mordasini, A. Bilandzic, D.J. Kim, arXiv: 2111.08145.

	Ref. [1]	Ref. [2] New!	Ref. [3] New!
	PID multi.		N _{ch}
	N _{ch}		$PID\; \langle p_T \rangle$
ه<	$PID \left< p_T \right>$		v_2,\ldots,v_4
76 T	$\delta p_T/\langle p_T angle$		NSC(3,2), NSC(4,3)
N	E_T		NSC(2,3,4), NSC(2,3,5)
	$v_2,, v_4$		$ ho_{4,22}$ to $ ho_{6,mk}$
			$\chi_{4,22}$ to $\chi_{6,mk}$
	N _{ch}	PID multi.	PID multi.
	$v_2,, v_4$	N _{ch}	N _{ch}
		PID $\langle p_T angle$	$PID\; \langle p_T \rangle$
Te		v_2,\ldots,v_4	v_2,\ldots,v_4
5.02		v_5,\ldots,v_7	v_5,\ldots,v_7
		NSC(3,2)	NSC(3,2) to NSC(4,3)
		to NSC(4,3)	$\chi_{4,22}$ to $\chi_{6,mk}$
		$\chi_{4,22}$ to $\chi_{6,mk}$	$ ho_{4,22}$ to $ ho_{6,mk}$

Sensitivity of normalized symmetric cumulants:

$$\mathsf{NSC}(m,n) = \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle}, \quad \to \quad S_{\mathsf{NSC}(m,n)}[\eta/s] \sim \mathbf{0} + \mathsf{non-linear!}$$

[1] Teaney, Yan, PRC 86 (2012) 044908

[2] Gubser, Yarom, Nucl.Phys.B 846 (2011) 469-511

Maximum A Posteriori parametrization

Overall agreement, with only few discrepancies

- The energy dependence of v_2 .
- Deviation from simulation and data in NSC(2,4) and NSC(2,3,5). More plots in Refs. [1,2].

- Pre-equilibrium dynamics is missing in these models.
- The model predictions are worsen at lower multiplicities.
- Removing the non-flow effects are challenging, especially at low multiplicities.

[1] Schenke, Shen, Tribedy, PRC 102 (2020) 044905 [2] Zhao, Zhou, Xu, Deng, Song, PLB 780 (2018) 495-500

- Pre-equilibrium dynamics is missing in these models.
- The model predictions are worsen at lower multiplicities.
- Removing the non-flow effects are challenging, especially at low multiplicities.

- Pre-equilibrium dynamics is missing in these models.
- The model predictions are worsen at lower multiplicities.
- Removing the non-flow effects are challenging, especially at low multiplicities.

[1] Schenke, Shen, Tribedy, PRC 102 (2020) 044905 [2] Zhao, Zhou, Xu, Deng, Song, PLB 780 (2018) 495-500

- Pre-equilibrium dynamics is missing in these models.
- The model predictions are worsen at lower multiplicities.
- Removing the non-flow effects are challenging, especially at low multiplicities.

[1] Schenke, Shen, Tribedy, PRC 102 (2020) 044905 [2] Zhao, Zhou, Xu, Deng, Song, PLB 780 (2018) 495-500

What is happening in small systems / low multiplicities?

- In superSOINUC: as a pre-equilibrium stage T^{μν}_{AdS/CFT} is matched to T^{μν}_{hydro} at τ_{hydro}.
- In 3DGlauber
 MUSIC
 UrQMD: A 3D dynamical initial state is considered.
- $\blacktriangleright \quad \mathsf{IP}\text{-}\mathsf{Glasma} \otimes \mathbb{1} \otimes \mathsf{MUSIC} \otimes \mathsf{UrQMD}$
- ► HIJING \otimes 1 \otimes VISH2+1 \otimes UrQMD
- ► $T_RENTo \otimes$ Free-streaming \otimes VISH2+1 \otimes UrQMD
- ► MC-Glauber (OSU) ⊗ Gage/Gravity ⊗ VH2+1 ⊗ B3D
- SDGlauber⊗Dynamical IS⊗MUSIC⊗UrQMD

Small system and GubsHyd

[SFT, PRC 102 (2020) 024910]

In GubsHyd:

- The hydrodynamic evolution starts at $T\tau$ =const. Evidences:
 - Attractors in Gubser flow using Kin. Theory, $w(T\tau) = w_0$ [1]
 - Non-hydrodynamic modes decay time: $e^{-z_0T\tau}$ [2]
 - "Inhomogeneous longitudinal cooling"!? [3]
- Cold corona region contributes to the multiplicity.
- Compared to $\tau = \text{const.}$, less evolution time \rightarrow smaller v_n .

[1] Behtash, Cruz-Camacho, Martinez, PRD 97 (2018) 044041

[2] Heller, Janik, Witaszczyk, PRL 108 (2013) 211602

^[3] Ambrus, Schlichting, Werthmann, PRD 105 (2022) 014031

Summary

- Importance of observables to understand the models. We need to choose cleverly!
- Improvement of the transport coefficient uncertainties.
- Including small system information into a Bayesian analysis needs a careful consideration.
- The pre-equilibrium dynamics could have a substantial influence in small system collisions.

Outlook

- Observables sensitive to initial state: isobar ratio
- Collective models with dynamical pre-equilibrium
- Framework beyond hydrodynamics in an event-by-event basis

[Kurkela, SFT, Wiedemann, Wu, PLB 811 (2020) 135901]

Thank You!

Backup Slides

References of slide in page 2

[IP-Glasma] Bjoern Schenke, Prithwish Tribedy, and Raju Venugopalan, Phys. Rev. Lett. 108, 252301 (2012); Bjoern Schenke, Prithwish Tribedy, and Raju Venugopalan, Phys. Rev. C 86, 034908 (2012)

[T_RENTo] J. Scott Moreland, Jonah E. Bernhard, and Steffen A. Bass, Phys. Rev. C 92, 011901 (2015)

[MC-Glauber] Wojciech Broniowski, Maciej Rybczynski, and Piotr Bozek, Comput. Phys. Commun. 180, 69?83 (2009)

[MC-KLN] H. J. Drescher and Y. Nara, Phys. Rev. C 75, 034905 (2007); Hans-Joachim Drescher and Yasushi Nara, Phys. Rev. C 76, 041903 (2007) [Free-streaming] Jonah E. Bernhard. PhD Thesis. arXiv: 1804.06469:

[KøMPøST] Aleksi Kurkela, Aleksas Mazeliauskas, Jean-François Paquet, Sören Schlichting, and Derek Teaney, Phys. Rev. Lett. 122, 122302 (2019)

[Gauge/gravity] W. van der Schee, P. Romatschke, S. Pratt, Phys. Rev. Lett. 111, 222302 (2013)

[VISH2+1] Huichao Song, Steffen A. Bass, and Ulrich Heinz, Phys. Rev. C 83, 024912 (2011)

[MUSIC] Bjoern Schenke, Sangyong Jeon, and Charles Gale, Phys. Rev. C 82, 014903 (2010)

[Trajectum] G. Nijs, W. van der Schee, U. Gürsoy, R. Snellings, Phys.Rev.C 103, 054909 (2021)

[VH2+1] Matthew Luzum and Paul Romatschke, Phys. Rev. C 78, 034915 (2008). [Erratum: Phys.Rev.C 79, 039903 (2009)]; Paul Romatschke and Ulrike Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

[UrQMD] M. Bleicher et al., J. Phys. G 25, 1859?1896 (1999)

[SMASH] J. Weil et al., Phys. Rev. C 94, 054905 (2016)

[B3D] John Novak, Kevin Novak, Scott Pratt, Joshua Vredevoogd, Chris Coleman-Smith, and Robert Wolpert, Phys. Rev. C 89, 034917 (2014)

MAP parameters

Parameter	Description	Range	MAP
N(2.76 TeV)	Overall normalization (2.76 TeV)	[11.152, 18.960]	14.373
N(5.02 TeV)	Overall normalization (5.02 TeV)	[16.542, 25]	21.044
p	Entropy deposition parameter	[0.0042 , 0.0098]	0.0056
σ_k	Std. dev. of nucleon multiplicity fluctuations	[0.5518, 1.2852]	1.0468
d_{\min}^3	Minimum volume per nucleon	$[0.889^3, 1.524^3]$	1.2367^{3}
$ au_{ m fs}$	Free-streaming time	[0.03, 1.5]	0.71
T_c	Temperature of const. $\eta/s(T), T < T_c$	[0.135, 0.165]	0.141
$\eta/s(T_c)$	Minimum $\eta/s(T)$	[0, 0.2]	0.093
$(\eta/s)_{\text{slope}}$	Slope of $\eta/s(T)$ above T_c	[0, 4]	0.8024
$(\eta/s)_{\rm curve}$	Curvature of $\eta/s(T)$ above T_c	[-1.3, 1]	0.1568
$(\zeta/s)_{\text{peak}}$	Temperature of $\zeta/s(T)$ maximum	[0.15, 0.2]	0.1889
$(\zeta/s)_{\rm max}$	Maximum $\zeta/s(T)$	[0, 0.1]	0.01844
$(\zeta/s)_{\rm width}$	Width of $\zeta/s(T)$ peak	[0, 0.1]	0.04252
T _{switch}	Switching / particlization temperature	[0.135, 0.165]	0.1595

$$\eta/s)(T) = (\eta/s)(T_c) + (\eta/s)_{\text{slope}}(T - T_c) \left(\frac{T}{T_c}\right)^{(\eta/s)_{\text{curve}}}, \qquad (\zeta/s)(T) = \frac{(\zeta/s)_{\text{max}}}{1 + \left(\frac{T - (\zeta/s)_{\text{peak}}}{(\zeta/s)_{\text{width}}}\right)^2}.$$

MAP parametrization

Chi-square

Posterior distribution

Posterior distribution

GubsHyd:

[SFT, Phys.Rev.C 104 (2021) 5, 054906]

A semi-analytical toy model based on the analytical Gubser hydrodynamic solution

Linear response approximation $v_2 \simeq k_2 \varepsilon_2$

 $v_2 \simeq k_2(n_{\text{tot}}, r_{\text{rms}})\varepsilon_2$

VALIDATION: MC-Glauber+VISH(2+1) Vs MC-Glauber+GubsHyd

Pb–Pb collision, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Same initial state set for both and GubsHyd

GubsHyd for small system collisions

We model the initial state fluctuation

We assume ε_2 and $r_{\rm rms}$ fluctuate as follows:

 $\begin{aligned} p_{\text{init}}(\varepsilon_{2}, r_{\text{rms}}) \\ &= \left[\frac{r_{\text{rms}}}{\sigma_{r}^{2}} e^{-r_{\text{rms}}^{2}/2\sigma_{r}^{2}} \right] \\ &\times \left[\frac{\varepsilon_{2}}{\sigma_{\varepsilon}^{2}} e^{-\varepsilon_{2}^{2}/2\sigma_{\varepsilon}^{2}} [1 + \frac{\Gamma_{2}^{\varepsilon}}{2} L_{2}(\varepsilon_{2}^{2}/2\sigma_{\varepsilon}^{2}) + \cdots] \right] \end{aligned}$

Then the two particle correlation is given by

$$\begin{split} p_{\text{final}}(\mathbf{v}_{2}) : \\ v_{2}\{2\} &= \chi \, \sigma_{\varepsilon} \, \sqrt{2\langle k_{2}^{2}(n_{\text{ntot}}, r_{\text{rms}}) \rangle_{r}} \\ v_{2}\{4\} &= \chi \, \sigma_{\varepsilon} \, \left[8 \langle k_{2}^{2} \rangle_{r}^{2} - 4(2 + \Gamma_{2}^{\varepsilon}) \langle k_{2}^{4} \rangle_{r} \right]^{1/4} \end{split}$$

Two- and four-particle correlation of proton-proton collision

[SFT, Phys.Rev.C 104 (2021) 5, 054906]

By fitting the model to data, we obtain the free parameters:

$$p_{\text{final}}(v_2) \longrightarrow p_{\text{init}}(\varepsilon_2, r_{\text{rms}})$$

The initial state fluctuation should has the following properties:

$$\begin{aligned} \sigma_{\mathbf{r}} &\approx 0.4 \text{ [fm]} \\ \chi \, \sigma_{\varepsilon} &\approx 0.097 \\ \Gamma_{\mathbf{2}}^{\varepsilon} &\equiv -\left(\frac{\varepsilon_2 \{4\}}{\varepsilon_2 \{2\}}\right)^4 \approx -0.75 \end{aligned}$$

Do AMPT (only for initial state) and T_RENTo fulfill these conditions?

	To cancel out the effect of $\chi\sigma_{\!\mathcal{E}},$ we define $\Gamma_2^{\nu}=-$	$\left(\frac{v_2\{4\}}{v_2\{2\}}\right)^4$	$\equiv \frac{c_2 \{4\}}{c_2^2 \{2\}}$
--	--	--	--

σ_g [fm]	σ_r^{AMPT} [fm]	$\Gamma_2^{\epsilon(AMPT)}$	$\Gamma_2^{\nu(\text{AMPT+Gubs})}$
0.5	0.48	0.53	0.80
0.4	0.41	0.18	0.53
0.3	0.35	-0.17	0.26
0.2	0.30	-0.48	0.01
0.1	0.26	-0.73	-0.20

$$\sigma_r \approx 0.4 \text{ [fm]}$$

 $\Gamma_2^{\varepsilon} \approx -0.75$

A similar behavior is observed for T_BENTo .

Scanning the parameters

