

# Medium induced jet broadening in a quantum computer

# 4th August 2022, Confinement XV

Based on: 2104.04661, with C. Salgado

2208.XXXX, with C. Salgado, M. Li, W. Qian, X. Du



# João Barata, BNL

# Why quantum computing for jets?

#### See also talks by L. Apolinário, P. Caucal, M. A. Escobedo, A. Sadofyev, ... Many of the pheno relevant effects in jet quenching have a quantum origin

e.g.



### **Qcomputers should be able to handle quantum systems naturally!**



#### What can we learn about jets from these machines ?







# Jet quenching in a QC: a possible approach







Integrating out x<sup>-</sup> the quark propagator satisfies

$$\left(i\partial_t + \frac{\partial_{\boldsymbol{x}}^2}{2\omega} + g\mathcal{A}^-(t,\boldsymbol{x})\cdot T\right)G(t,\boldsymbol{x};0,\boldsymbol{y}) = i\delta(t)\delta(\boldsymbol{x}-\boldsymbol{y})$$

Parton evolution is equivalent to 2+1d non-rel. QM

$$\mathcal{H}(t) = rac{p^2}{2\omega} + g\mathcal{A}^-(t, \boldsymbol{x}) \cdot T = \mathcal{H}_K + \mathcal{H}_\mathcal{A}(t)$$
  
p-space x-space

**Consider the simplest case:** 

- $|q\rangle$  Fock space only
- **2.** T = 1
- Stochastic background (hybrid approach) 3.



# The quantum simulation algorithm

**QComputers can efficiently simulate real time evolution** ruled by:

$$|\psi\rangle(t) = \exp(-iHt)|\psi\rangle(0)$$

The 5 main steps of the Quantum Simulation Algorithm:

1. Provide 
$$H = \sum_{k} H_k$$
 and  $\psi(0)$ 

Encode the physical d.o.f's in terms of qubits and decompose  $H_k$  in terms of gates 2.

- 3. Prepare the initial wave function from a fiducial state ( $|0\rangle^{\otimes n_{qubits}}$ )
- **4.** Time evolve according to exp(-iHt)
- **5.** Implement a measurement protocol







1. Provide 
$$H = H_K + H_A(t)$$
 and  $\psi(0) =$ 

Encode the physical d.o.f's in terms of qubits and write H in terms of gates 2. Introduce 2d spatial lattice with  $N_s = 2^{n_Q}$  sites per dimension

$$|\mathbf{x}\rangle = |x_1, x_2\rangle$$

such that

 $H = rac{oldsymbol{P}^2}{2E} + gA(t, oldsymbol{X}$ 

$$\hat{P}|p\rangle = p|p\rangle \qquad \hat{X}|z$$

Prepare the initial wave function from a fiducial state ( $|0\rangle^{\otimes n_{\text{qubits}}}$ )  $\checkmark$ 3.



# $= \psi(\mathbf{p} = 0) + \text{ensemble of } \{A, p_A\}$

 $= a_{1} | n_{1}, n_{2} \rangle$ 

$$T = H_K + H_A(t)$$



 $x\rangle = x \,|\, x\rangle \qquad x, p \in \mathbb{Z}$ 



4. Time evolve according to U Assuming that field is static we use

and the second and the second second

$$U(L_{\eta}; 0) = \prod_{k=1}^{N_t} U(x_k^+; x_{k-1}^+)$$

Implement operators with a Fourier Transform in between

$$\exp\left\{-i\delta x^{+}\frac{\hat{p}^{2}}{2p^{+}}\right\} \quad |\psi_{\mathbf{p}}\rangle \qquad |\mathbf{p}\rangle \qquad qFT$$



$$U(x_k^+ + \delta x^+; x_k^+) \approx U_K(\delta x^+) U_A(\delta x^+, x_k^+)$$
$$\equiv \exp\left\{-i\delta x^+ \frac{\hat{p}^2}{2p^+}\right\} \exp\left\{-ig\delta x^+ \hat{A}_a^-(x_k^+)T^a\right\}$$

$$\left| \begin{array}{c} \mathbf{X} \\ \mathbf{X} \\$$





## 4. Time evolve according to ${\cal U}$

Field insertions require probing the field value. This is done classically



# Requires $O(N_{\text{states}})$ field evaluations; Ok for resolving parton evolution

### Major limitation of the approach due to classical treatment of medium

Can be made more efficient with further discretization of the field values





Implement a measurement protocol 5.



Rough estimate: for Gaussian errors and an uniform distribution, statistical error of 10% requires  $\sim 10^2 \times \text{#states shots}$ 



 $\ket{\psi_L} = \sum_{\boldsymbol{q}} \psi_L^{\boldsymbol{q}} \ket{\boldsymbol{q}}$ 

Generic final state

#### Due to quantumness, measurement needs optimization: interference experiment

SWAP test: find overlap of 2 wave-functions

Rough estimate: ~  $10^2 \times \# \mathcal{O}(1)$  shots



Set up:

- 1. T = 1 (no colors) mostly
- Static brick of length 10 fm 2.
- 5/6 qubits per spatial dimension (1024/4096 states in total). 3.
- 4.

Determined by saturation scale:

$$g^2 \tilde{\mu} = \sqrt{\frac{2\pi Q_s^2}{C_F L_\eta}}$$

Determined by lattice saturation conditions:

$$\frac{\pi}{N_{\perp}m_g} \ll a_{\perp} \ll \frac{\pi}{Q}$$

(relevant physical region is covered)

$$a_{\perp}^2 Q_s^2 < \frac{4\pi^2}{3} \Big[ \log(\frac{1}{a_{\perp}^2 m_g^2 / \pi^2} + 1) - \frac{1}{1 + a_{\perp}^2 m_g^2 / \pi^2} \Big]^{-1} \text{ (edge equation)}$$





We use 5 field configurations. These are determined by lattice spacing and the field strength



effects are absent)



The jet quenching parameter on the lattice is easily obtained analytically:

$$\hat{q} = \frac{1}{t} \int_{\boldsymbol{p},\boldsymbol{x},\boldsymbol{y}} \boldsymbol{p}^2 e^{-i\boldsymbol{p}\cdot(\boldsymbol{y}-\boldsymbol{x})} \langle\!\langle \boldsymbol{W}^{\dagger}(\boldsymbol{y})\boldsymbol{W}(\boldsymbol{x})\rangle\!\rangle = g^2 \langle\!\langle \boldsymbol{\nabla}_{\boldsymbol{x}}\boldsymbol{\mathcal{A}}(\boldsymbol{0})\cdot\boldsymbol{\nabla}_{\boldsymbol{x}}\boldsymbol{\mathcal{A}}(\boldsymbol{0})\rangle\!\rangle = \frac{g^4}{4\pi} C_F \tilde{\mu}^2 \left\{ \log\left(1 + \frac{\frac{\pi^2}{a_{\perp}^2}}{m_g^2}\right) - \frac{1}{1 + \frac{a_{\perp}^2 m_g^2}{\pi^2}}\right\}$$





#### In accordance with expected result w/wo kinetic terms

### **Deviation at large saturation values due to lattice**







Same result but for two different lattices at infinite jet energy











Same results but for a SU(2) background







**Product formula decomposition** 



also works by JB, Sadofyev, Salgado; Fu, Casalderrey-Solana, Wang; Sadofyev, Sievert, Vitev; Sadofyev, Dominguez, Andrés; ...

See also talk by A. Sadofyev



## **Energy independent terms might give sizable contribution !**













# **Conclusion and Outlook**





See e.g.: 1907.03653 F. Dominguez, J. G. Milhano, C. Salgado, K. Tywoniuk, V. Vila

