Colliding poles with colliding nuclei

Alexander Soloviev

with Sukrut Mondkar, Ayan Mukhopadhyay and Anton Rebhan

Based on: 2101.10847, 2108.02788, 2111.03640, 2208.XXXXX

Quark Confinement August 2nd, 2022

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Complex structure of effective descriptions¹

Variety of effective theories to describe aspects of QGP, but what is the microscopic structure of QGP?

¹Kurkela, Wiedemann, Wu 1905.05139

Complex structure of effective descriptions¹

¹Kurkela, Wiedemann, Wu 1905.05139

Complex structure of effective descriptions¹

How does one mix effective descriptions? Use a hybrid description, e.g. **semi-holography**, to see interplay between effective descriptions of QGP.

¹Kurkela, Wiedemann, Wu 1905.05139

Colliding poles in chiral phase transition

Chiral phase transition

Approximate chiral symmetry $SU(2)_L \times SU(2)_R \sim O(4)$

Chiral phase transition

Approximate chiral symmetry $SU(2)_L \times SU(2)_R \sim O(4)$ Formation of the chiral condensate:

$$\langle \bar{q}q \rangle \rightarrow \phi_{\alpha} = (\qquad \sigma \qquad , \stackrel{\text{pions}}{\varphi_i})$$

order parameter

Model near O(4) critical point²

Describe O(4) physics via

$$\mathcal{H} = \int_{x} p(T) + \frac{\chi_0}{4} \mu_{ab}^2$$
$$- \frac{1}{2} \Delta^{\mu\nu} D_{\mu} \phi_a D_{\nu} \phi_a + m_0^2 (T - T_c) \phi^2 + \lambda \phi^4 - H \phi$$

• O(4) vector: $\phi_a = (\sigma, \varphi_i)$

• μ_{ab} is the chemical potential See also talk Friday at 16:10

²Rajagopal/Wilczek 9210253,Son/Stephanov 0204226

Example of colliding poles: chiral phase transition³

Linearization leads to coupled EOM of pions and chemical potential in mean field with ideal with dissipative corrections:

$$\partial_t \varphi = -\mu_A + \Gamma(\nabla^2 - m^2)\varphi$$
$$\partial_t \mu_A = v^2 (-\nabla^2 + m^2)\varphi + D_0 \nabla^2 \mu_A$$

Lattice from: Engels, Vogt 0911.1939, Engels, Karsch 1105.0584

³Grossi, AS, Teaney, Yan 2101.10847, Florio, Grossi, AS and Teaney 2111.03640

Example of colliding poles: chiral phase transition³

Linearization leads to coupled EOM of pions and chemical potential in mean field with ideal with dissipative corrections:

 $\partial_t \varphi = -\mu_A + \Gamma(\nabla^2 - m^2(T))\varphi$ $\partial_t \mu_A = v^2(T)(-\nabla^2 + m^2(T))\varphi + D_0 \nabla^2 \mu_A$

Lattice from: Engels, Vogt 0911.1939, Engels, Karsch 1105.0584

³Grossi, AS, Teaney, Yan 2101.10847, Florio, Grossi, AS and Teaney 2111.03640

For $z \gg 0$, $\rho_{AA}/\omega \propto Dk^2/(\omega^2 + (Dk^2)^2)$, diffusion of quarks.

For $z \ll 0$, $\rho_{AA} \propto \Gamma_k/((-\omega + \omega_k)^2 + (\Gamma_k/2)^2)$, propagating pions

Can see hadronization from QGP to soft pions in the propagator!

Collision of poles!

Change of phase seen in collision of poles as temperature drops!

Colliding poles in hybrid description: holography + scalar field

 QNMs describe dissipation of linearized perturbations around equilibrium solutions

$$e^{i\omega t}\sim e^{-t\,{
m Im}\omega}e^{it\,{
m Re}\omega}$$

- QNMs describe dissipation of linearized perturbations around equilibrium solutions
- EOM for a massless scalar field: $\nabla_M \nabla^M \Phi = 0$

- QNMs describe dissipation of linearized perturbations around equilibrium solutions
- EOM for a massless scalar field: $\nabla_M \nabla^M \Phi = 0$
- Choose a background, e.g. Eddington-Finkelstein Schwarzschild-AdS₄:

$$ds^{2} = -\frac{L^{2}}{r^{2}}(1 - Mr^{3})dt^{2} - 2\frac{L^{2}}{r^{2}}dtdr + \frac{L^{2}}{r^{2}}(dx^{2} + dy^{2})$$

- QNMs describe dissipation of linearized perturbations around equilibrium solutions
- EOM for a massless scalar field: $\nabla_M \nabla^M \Phi = 0$
- Choose a background, e.g. Eddington-Finkelstein Schwarzschild-AdS₄:

$$ds^{2} = -rac{L^{2}}{r^{2}}(1 - Mr^{3})dt^{2} - 2rac{L^{2}}{r^{2}}dtdr + rac{L^{2}}{r^{2}}(dx^{2} + dy^{2})$$

• Decompose into Fourier modes $\Phi(r, x^{\mu}) \rightarrow e^{-ix \cdot k} f(r, k_{\mu})$

- QNMs describe dissipation of linearized perturbations around equilibrium solutions
- EOM for a massless scalar field: $\nabla_M \nabla^M \Phi = 0$
- Choose a background, e.g. Eddington-Finkelstein Schwarzschild-AdS₄:

$$ds^{2} = -rac{L^{2}}{r^{2}}(1 - Mr^{3})dt^{2} - 2rac{L^{2}}{r^{2}}dtdr + rac{L^{2}}{r^{2}}(dx^{2} + dy^{2})$$

• Decompose into Fourier modes $\Phi(r, x^{\mu}) \rightarrow e^{-ix \cdot k} f(r, k_{\mu})$

$$\Rightarrow 0 = (Mr^3 - 1)f'' + \frac{Mr^3 + 2 - 2ir\omega}{r}f' + \frac{k^2r + 2i\omega}{r}f$$

- QNMs describe dissipation of linearized perturbations around equilibrium solutions
- EOM for a massless scalar field: $\nabla_M \nabla^M \Phi = 0$
- Choose a background, e.g. Eddington-Finkelstein Schwarzschild-AdS₄:

$$ds^{2} = -rac{L^{2}}{r^{2}}(1 - Mr^{3})dt^{2} - 2rac{L^{2}}{r^{2}}dtdr + rac{L^{2}}{r^{2}}(dx^{2} + dy^{2})$$

Decompose into Fourier modes

Semiholography

Use semiholography⁴ - framework that mixes holography in the IR with dynamical perturbative degrees of freedom in the UV Interactions via marginal deformations of couplings

⁴Faulkner, Polchinski 1001.5049; Iancu, Mukhopadhyay 1410.6448; Mukhopadhyay, Preis, Rebhan, Stricker 1512.06445; Banerjee, Gaddam, Mukhopadhyay 1701.01229; Kurkela, Mukhopadhyay, Preis, Rebhan, AS 1805.05213 Ecker, Mukhopadhyay, Preis, Rebhan, AS 1806.01850

Semiholographic model⁴

$$S = W_{\rm CFT}[h(x) = -\beta\chi] - \frac{1}{2} \int d^3x \partial_\mu \chi \partial^\mu \chi$$

⁴Mondkar, Mukhopadhyay, Rebhan, AS: 2108.02788

Semiholographic model⁴

$$S = W_{\text{CFT}}[h(x) = -\beta\chi] - \frac{1}{2}\int d^3x \partial_\mu\chi \partial^\mu\chi$$

EOMs: $\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}\chi = \beta \frac{\delta W_{CFT}}{\delta h} = \beta \underbrace{\mathcal{H}}_{\text{vev of } \Phi}$ $R_{MN} - \frac{1}{2}RG_{MN} - 3G_{MN} = \kappa (\nabla_M \Phi \nabla_N \Phi - \frac{1}{2}G_{MN} (\nabla_P \Phi)^2)$ $\nabla_M \nabla^M \Phi = 0.$ Φ has near boundary expansion: $\Phi = -\beta \chi + \ldots + \frac{3}{\kappa} \mathcal{H}r^3 + \ldots$ ⁴Mondkar, Mukhopadhyay, Rebhan, AS: 2108.02788

11/17

Semiholographic model⁴

$$\mathcal{S} = \mathcal{W}_{ ext{CFT}}[h(\mathbf{x}) = -eta\chi] - rac{1}{2}\int d^3x \partial_\mu\chi\partial^\mu\chi$$

Stress tensor of the full system is conserved, $\partial_\mu T^{\mu
u}=0$

$$T^{\mu
u}=t^{\mu
u}_{\chi}+\mathcal{T}^{\mu
u}$$

Study hybrid fluctuations of bulk dilaton Φ and the boundary scalar field χ

⁴Mondkar, Mukhopadhyay, Rebhan, AS: 2108.02788

Homogeneous QNM - varying β at k = 0

- Saturation for $\beta \sqrt{T} \rightarrow \infty$ and emergent conformality
- Unstable mode drives energy from holographic sector to boundary scalar at early time

Homogeneous QNM - varying β at k = 0

- Unstable mode drives energy from holographic sector to boundary scalar at early time
- Total system has no instability!

diffusion pole, quasi-hydro pole, transient unstable mode, semiholographic pole, holographic QNM

Emergence of *k*-gap For $\beta \sqrt{T} = 0.15$

- k-gap is characteristic of systems with a diffusive to propagating mode crossover
- ► Quasi-hydrodynamic framework⁵ relates this to a softly broken global symmetry $\omega = -\frac{i}{2\tau}(1 \pm \sqrt{1 4D\tau k^2})$
- Here, global shift symmetry of the theory is

$$\chi \to \chi + \chi_0, \quad \Phi \to \Phi - \beta \chi_0$$

⁵Grozdanov, Lucas, Poovuttikul, 1810.10016

Experimental observation of k-gap⁶

Dispersion of transverse sound-like excitations of gallium

⁶arXiv:2005.00470

Summary and outlook

- Complex structure of the QGP is rich! Need more work to understand theoretical structure better
- How does the quasinormal mode spectrum of a holographic theory interplay with:
 - Israel-Stewart hydrodynamics see arXiv:2208.XXXXX
 - kinetic theory?
- How do branch cuts seen in kinetic theory interact with other complex structure?