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● This approach has led to many fundamental non-perturbative insights:

    

e+ e-

 →  Relationship between Minkowski and Euclidean QFTs 

 →  CPT is a symmetry of any QFT

 →  Connection between spin & particle statistics 

 →  Existence of dispersion relations, etc.

Yes!  Important progress was made by J. Bros and D. Buchholz

But... this framework only describes QFTs in the vacuum state 

Local QFT beyond the vacuum

→  Can one apply a similar approach to regimes where T > 0 or  μ ≠ 0 ? 

→ See: [Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys.Theor. 64 (1996), 
             Nucl. Phys. B 429 (1994), Nucl. Phys. B 627 (2002)] 

“Local QFT” →  Define QFTs using a core set of physically-motivated                    
                      assumptions, e.g. causality, Poincaré invariance, positive energy, ...
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Non-perturbative implications

● By demanding fields to be local ([Φ(x),Φ(y)]=0 for (x-y)2< 0) this imposes 
significant constraints on the structure of correlation functions 

→  For T=1/β > 0, the scalar spectral function has the representation:  

    Note: this is a non-perturbative representation!

● In the limit of vanishing temperature one recovers the well-known 
Källén-Lehmann spectral representation: 
 

             

“Thermal spectral density” 

e.g. ρ(s)=δ(s-m2) for 
a massive free theory  

Important question: what does the thermal spectral density Dβ(u,s) look like?~
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● A natural decomposition [Bros, Buchholz, NPB 627 (2002)] is:
 

 

             
“Damping factor” Continuous component 

Causes T= 0 mass 
pole m to be screened 

by thermal effects 

Fixes T-dependence 
of continuous spectral 

contributions   

→ Damping factors hold the key to understanding in-medium effects!

m

Peak broadening 
controlled by Dm,β(u) ~

Non-perturbative implications
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In-medium observables from Euclidean data

● In many instances, T>0 Euclidean data is used to calculate observables, 
e.g. spectral functions from  

● A quantity of particular interest in lattice studies is the spatial correlator 

 

             

Determine ρΓ( ,ω p) given CΓ(τ,p) 

→ Problem is ill-conditioned, need additional information!

● Large-x3 behaviour CΓ (x3) ~ exp(-mscr|x3|)  
used to extract screening masses mscr(T)

[HotQCD collaboration, 
Phys. Rev. D 100 (2019)]
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● Locality implies the following connection between the spatial correlator and 
thermal spectral density [P.L., 2201.12180; P.L, O. Philipsen, 2207.14718]

● Once the damping factors of all contributing states are known, one can use 
these to compute their contribution to ρ( ,ω p)  

● In QCD, perhaps the simplest spatial correlator example is that of the light 
quark pseudo-scalar meson operator

  

             

Goal: Use lattice data from [Rohrhofer et al. PRD 100 (2019)] (Nf=2 with chiral 
fermions and physical masses) to compute the spectral function ρPS( ,ω p) 

→ Lightest T=0 states dominate:

Locality constraints: spectral functions from lattice data
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➢ Step 1: Perform fits to the spatial correlator data CPS(x3) to obtain the functional 
dependence at different temperatures (A exp(-Bx3)+C exp(-Dx3) ansatz describes 
the data very well) 

➢ Step 2: Calculate the corresponding damping factors from CPS(x3) (for π and π*)
➢ Step 3: Use Dm,β(x) to compute ρPS( ,ω p) via the spectral representation      

  

                                                                                                    
The π and π* dominate the spectral function at these T, and the  π has 
a pronounced peak in some range T >Tpc   [P.L, O. Philipsen, 2207.14718]

π

π* π

π*

Locality constraints: spectral functions from lattice data



 8

● Exponential contributions to spatial correlators imply particle states with 
exponential damping factors →   

  

● This in turn fixes the form of the particle screening masses:

● γi(T) controls the width of the peaks, and γi(T) → 0 for T → 0

● This happens at different rates for π and π* → sequential melting!    

Locality constraints: spectral functions from lattice data
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A non-perturbative test of the spectral function

● Since we have the full analytic structure of ρPS(ω,p), one can use this to predict 
the form of the corresponding temporal correlator CPS(τ,p=0)

● CPS(τ,p=0) has a very different ρPS(ω,p) dependence → highly non-trivial test!

● We used the temporal data from [Rohrhofer et al. PLB 802 (2020)], which has the 
same lattice parameters as the spatial correlator study [Rohrhofer et al. PRD 100 (2019)] 
   

● Temporal prediction matches T=220 MeV data well for large ,τ  and then 
undershoots → Makes sense: higher excited state contributions (π** etc.) missing  
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● Local QFT is an analytic framework that attempts to address the fundamental 
question “what is a QFT?” 

● The framework can be extended to T > 0, and this has important 
implications, including:

    →  Spectral representations for thermal correlation functions

    →  Ability to extract real-time observables from Euclidean data

    →  Interpretation of screening masses

● So far only real scalar fields Φ(x) with T > 0 considered, but this approach 
can be extended (higher spin, µ  0). ≠ Work in progress!

   

Summary & outlook

 →  This framework provides a way of obtaining            
       non-perturbative insights into the phase structure  
       of QFTs, and the resulting in-medium phenomena 

[Brookhaven National Lab] 
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● In the 1960s, A. Wightman and R. Haag pioneered an approach which 
set out to answer the fundamental question “what is a QFT?”

● The resulting approach, Local QFT, defines a QFT using a core set of 
physically motivated axioms

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1992).]

Backup: Local QFT
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  ● Idea: Look for a generalisation of the standard axioms that is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

→

→

→

H
β
 is defined for fixed β=1/T

Replaced by the KMS condition

Instead, thermal background state |Ω
β
>

Fields are still distributions  

Locality is unaffected by the 
properties of the background state. 

This is important!  

 ✓

→

 ✓

Backup: Local QFT beyond the vacuum

The fields no longer transform 
under general unitary Lorentz 

transformations  



 13

Backup: Damping factors from Euclidean FRG data

● Locality constraints also imply that particle damping factors Dm,β(x) can be 
directly calculated from Euclidean momentum space data [P.L., 2201.12180]

● In [P.L., R.-A. Tripolt, 2202.09142] pion propagator data from the quark-meson 
model (FRG calculation) was used to compute the damping factor at 
different values of T via the analytic relation above

● Fits to the resulting data were consistent with the form:
● Dm,β(x) can then be used as input for                                    

calculations, e.g. shear viscosity      

   

 

             

p-space Euclidean 
propagator

Holds for large separation |x|

mπ=106 MeV

Similar qualitative features to results 
from chiral perturbation theory
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● Since all observable quantities are computed using correlation functions, 
which are characterised by damping factors, one can use these to gain 
new insights into the properties of QFTs when T>0 

● It has been proposed [Bros, Buchholz, NPB 627 (2002)] that these quantities 
are controlled by the large-time x0 dynamics of the theory

 

             x0 

 

∞-∞

   →  Need to take this into account in definition of scattering states!

Important: Interactions with the thermal background persist, even for large x0 

Backup: Damping factors from asymptotic dynamics
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● Idea: thermal scattering states are defined by imposing an asymptotic field 
condition [NPB 627 (2002)]:

    

● Given that the thermal spectral density has the decomposition

it follows that:  1. The continuous contribution to                        is suppressed    
                           for large x0 

                       2. The particle damping factor Dm,β(u) is uniquely fixed by the        
                           asymptotic field equation

● This means that the non-perturbative thermal effects experienced by particle 
states are entirely controlled by the asymptotic dynamics!   

  

            

●  

Asymptotic fields Φ0 are assumed to satisfy 
dynamical equations, but only at large x0

In Φ4 theory
“Asymptotic coupling”

“Asymptotic mass”

~

Backup: Damping factors from asymptotic dynamics
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● Applying the asymptotic field condition for Φ4 theory, the resulting damping 
factors have the form [NPB 627 (2002)]:

where  κ is defined with r =m/T:

● Now that one has the exact dependence of Dm,β(x) on the external physical 
parameters, in this case T, m and λ, one can use this to calculate observables 
analytically                

 

→  For λ < 0: →  For λ > 0:

Backup: Φ4 theory for T > 0

    →  The parameter  has the interpretation of a thermal             κ
         width: κ→0 for T→0, or equivalently κ-1 is mean-free path    
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● Of particular interest is the shear viscosity η, which measures the resistance of 
a medium to sheared flow

→ This quantity can be determined from the spectral function of the            
    spatial traceless energy-momentum tensor 

     ... and η is recovered via the Kubo relation

● Using Dm,β(x) for  λ < 0, the EMT spectral function ρ  ππ has the form: 

● The presence of interactions causes resonant 
peaks to appear → peaked when p0 ~ =κ 1/   ℓ

● For λ→0 the free-field result is recovered, as 
expected

● The dimensionless ratio m/T controls the 
magnitude of the peaks    

Backup: Φ4 theory for T > 0
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● Applying Kubo’s relation, the shear viscosity η0 arising from the asymptotic 
states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, PRD 104, 065010 (2021)] 

      

Dominant component 
for small |λ| For large |λ|, η0 ~ |λ|

Global minima

Magnitude of large |λ| 
growth controlled by m/T  

→  For fixed coupling, η0/T 
3 is entirely controlled by functions of m/T 

Backup: Φ4 theory for T > 0
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● What about the case λ > 0?  →  η0 diverges!

● This characteristic is related to the “bad” UV behaviour of the quartic 
interaction, i.e. the triviality of Φ4 appears to have an impact beyond T=0!

● In [PRD 104, 065010 (2021)] it was shown more generally that the finiteness of η0 
is related to the existence of thermal equilibrium  

● This procedure demonstrates that asymptotic dynamics can be used to 
explore the non-perturbative properties of QFTs when T>0 

          →  Can also calculate other observables, e.g. transport                    
               coefficients, entropy density, pressure, etc.

 Why?  – The particle damping factor Dm,β(u) does not decay rapidly      
              enough at large momenta 

If the KMS condition holds   ⟹  η0 is finite 

Backup: Φ4 theory for T > 0



 20

Backup: spectral representations

● For thermal asymptotic states, the spectral function ρππ  has the form   

... which after applying the generalised KL representation, together with the 
Kubo relation, implies

● The model dependence of η0 factorises, and is controlled by the 
thermal spectral density Dβ(u,s)
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● One can use the assumptions of local QFT at finite T to put constraints on 
the the structure of Euclidean correlation functions

       

● The Fourier coefficients of the Euclidean two-point function are then related 
to the thermal damping factors as follows [P.L., 2201.12180]:   

● ωN= 2 NT π are the Matsubara frequencies. For N=0 this leads to: 

 

→ The continuous component Dc(x,s) is exponentially suppressed!

Backup: Euclidean spectral relations

→  From the KMS condition and locality:
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