

1/15

Understanding the nature of $f_0(980)$ with ALICE at the LHC

Junlee Kim On behalf of the ALICE Collaboration Jeonbuk National University, South Korea

 $\begin{array}{c} {\rm Aug}\ 4,\ 2022 \\ {\rm The}\ 15 {\rm th}\ {\rm quark}\ {\rm confinement}\ {\rm and}\ {\rm th}\ {\rm hadron}\ {\rm spectrum} \end{array}$

• Resonance yields can be modified in the hadronic gas via regeneration and rescattering.

• Short-lived resonances are powerful probes to study the properties of the hadronic gas.

Particle yield ratio

- Strangeness enhancement is seen in the (K/π) and (ϕ/π) ratios.
- Flat (K^{*0}/π) with increasing multiplicity in pp and p–Pb collisions, due to two competing effects.
 - Strangeness enhancement
 - Suppressions due to the short lifetime of K^{*0} ($\tau_{K^{*0}} \sim 4.2 \text{ fm/}c$) \rightarrow evidence for rescattering effects
- No strangeness enhancement + dominant rescattering effects in Pb–Pb: decreasing (K^{*0}/π)

Junlee Kim

 K^{*0}/K

4/15

- Strangeness enhancement effect is not expected in (K^{*0}/K) ratio.
- Rescattering effects dominate the decreasing trend.
 - EPOS+UrQMD can qualitatively reproduce the (K^{*0}/K) ratio from small to large collision systems.
 - Strong suppression at low $p_{\rm T}$ + no suppression at high $p_{\rm T}$
- Therefore, rescattering is dominant at low $p_{\rm T}$.

Junlee Kim

2022 ConfXV イロト イラト イヨト イヨト ヨー つへへ

$f_0(980)$ resonance

- Scalar meson whose quark content and structure are still unresolved.
 - $q\bar{q}$ state: PRD 67, 094011 (2003)
 - Tetraquark $(q\bar{q}s\bar{s})$ state: PRD 103, 014010 (2021)
 - $K\overline{K}$ molecule state: PRD 101 094034 (2020)
- Measured f₀(980) yield in hadron-hadron collisions can be largely modified because of its short lifetime $(\tau_{f_0} \sim 2-20 \text{ fm}/c)$.
- Particle yield ratios and nuclear modification factor $(Q_{\rm pPb})$ of $f_0(980)$ allow to
 - Study the hadronic gas
 - Explore internal structure of $f_0(980)$

	$ ho^0$	K^*	$f_0(980)$	ϕ
Mass (MeV/c^2)	775	892	990	1020
J^P	1^{-}	1^{-}	0^+	1^{-}
Contents	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	$d\bar{s}$???	$s\bar{s}$
lifetime (fm/c)	1.3	4.2	\sim 2–20	46.2

$$\begin{split} &Q_{\rm pPb}(p_{\rm T},{\rm cent}) = \\ &\frac{{\rm d}^2 N_{\rm pPb}^{\rm cent}/{\rm dyd} p_{\rm T}}{< T_{\rm pPb}^{\rm cent} > {\rm d}^2 \sigma_{\rm pp}^{\rm INEL}/{\rm dyd} p_{\rm T}},\\ &\text{where} < T_{\rm pPb}^{\rm cent} > = N_{\rm coll}^{\rm cent}/\sigma_{\rm NN} \end{split}$$

ALICE detector

6/15

Great performance for tracking and PID down to very low $p_{\rm T}$

- Tracking with TPC + ITS
- PID with TPC + TOF
- Multiplicity estimation with
 - V0 + ZDC

'15

- Subtracting the combinatorial background using like-sign backgrounds
 The contributions from other resonances, f₂(1270) and ρ(770), are considered at the same time.
- The residual background is modeled using the function:

 $f_{\rm BG}(M_{\pi\pi}) = (M_{\pi\pi} - 2m_{\pi})^n A \exp(BM_{\pi\pi} + CM_{\pi\pi}^2)$

8/15

- $f_0(980) p_T$ spectra cannot be reproduced by HERWIG 7.2 model and AMPT+coalescence model in three configurations ($s\bar{s}$, $u\bar{u}s\bar{s}$, and $K\bar{K}$ molecule).
 - Some configurations for the f₀(980) structure can be excluded in the context of AMPT and Herwig models

arXiv:2206.06216

ALICE

Particle yield ratios: (f_0/K^{*0})

- Canonical statistical model (CSM) with multiplicity dependent $\gamma_s \leq 1$ [1] is used to predict (f_0/K^{*0}) ratio for different strangeness content hypotheses.
- Hidden strangeness $|S| {:}~ |S|^{\rho} = 0$ and $|S|^{\phi} = 2$
- CSM predicts an almost flat behavior for |S| = 2 while a decreasing trend (qualitatively similar to what seen in data) is expected for

 $|S| = \mathbf{0}$

- N.B.: No rescattering effects in CSM
- Lifetimes of K^{*0} and $f_0(980)$ are comparable to each other.
- [1] V. Vovchenko et al, PRC 100 (2019) 5, 054906

	K^*	$f_0(980)$	ϕ
lifetime (fm/c)	4.2	~ 4	46.2

Particle yield ratios: (f_0/π)

- (f_0/π) ratio decreases with increasing $\langle dN/d\eta \rangle$.
 - Similar trend as observed for (K^{*0}/K) but larger decrease with the multiplicity
 - Larger rescattering effects or smaller regeneration effects for $f_0(980)$?
- $\gamma_s \text{CSM}$ predicts (f_0/π)

increasing trend for |S| = 2 while

- a flat behavior is expected for |S| = 0
 - (f_0/π) is overestimated by CSM.
 - Rescattering effects for $f_0(980)$ is not considered.

	K^*	$f_0(980)$	ϕ
lifetime (fm/c)	4.2	~ 4	46.2

$p_{\rm T}$ -differential yield ratios of f_0(980) to π

• (f_0/π) : Significant modification at low p_T (< 3 GeV/c) and no modification at high p_T (> 4 GeV/c)

- Similar $p_{\rm T}$ dependence between (pp_{high}/pp_{low}) and (Pb–Pb/pp) for (K^{*0}/K)
- Similar $p_{\rm T}$ dependence between double ratio of (K^{*0}/K) and $({\rm f}_0/\pi)$

Junlee Kim

$p_{\rm T}$ -differential yield ratios of f₀(980) to K^{*0}

ALICE

12/15

• Rescattering effects should be comparable between $f_0(980)$ and K^{*0} as they have comparable lifetime.

- Different behavior between (K^{*0}/K) and (f_0/K^{*0}) in the full measured $p_{\rm T}$ interval
- (f_0/K^{*0}) : Modification in the entire p_T range.
 - \rightarrow due to different quark content for the two particles?

Junlee Kim

2022 ConfXV

(日) (日) (日) (日) (日) (日) (日)

• Multiplicity dependent suppression for $f_0(980)$ at the low $p_{\rm T}(< 4 {\rm ~GeV}/c)$

• Rescattering effects observed in all the centrality intervals

Junlee Kim

2022 ConfXV 《ロト 《日 ト 《 ヨ ト 《 ヨ ト ヨ の � � �

Cronin peak

14/15

• Cronin enhancement at intermediate $p_{\rm T}$: J. W. Cronin et al, PRD 11 3105 (1975)

• No Cronin peak is observed for $f_0(980)$ in contrast to what is observed for baryons.

- Decreasing (f_0/π) at low p_T
 - Evidence of rescattering-like effects for the $\mathrm{f}_0(980)$
- Decreasing (f_0/K^{*0}) in the full measured p_T range
 - due to different quark content for $f_0(980)$ and K^{*0} ?
- Multiplicity dependence of $Q_{\rm pPb}$ of $f_0(980)$
 - Stronger suppression of $f_0(980)$ at low p_T : rescattering effects
 - No Cronin peak for $Q_{\rm pPb}$ of $f_0(980)$ in high-multiplicity events.
- Models with different quark contents or structures are needed to shed light on $f_0(980)$ structure.

BACKUP

