Information entropy and fragmentation functions

Felipe J. Llanes-Estrada Guillermo Benito Calviño & Javier García Olivares

Universidad Complutense de Madrid, Departamento de Física Teórica and IPARCOS

 $1/{\rm Aug}/2022$ XV Quark Confinement & Hadron Spectrum

Remember the meeting in Gathertown?

(日) (同) (三) (三)

Remember the meeting in Gathertown?

イロン 不同 とくほう イロン

3

Information entropy

Probability of a configuration in terms of the number of bits of information obtained:

$$p = \left(\frac{1}{2}\right)^I \implies I = -\log_2(p)$$

Shannon entropy: expectation value of the information in a probability distribution

- 同 ト - ヨ ト - - ヨ ト

$$S = -\sum_i p_i \log p_i$$

Quantum Von Neumann entropy $S = -\text{Tr}(\rho \log \rho)$

< ∃ >

э

< ∃ >

э

Kharzeev and Levine, Phys.Rev.D 104 (2021) 3, L031503

3 1 4 3

Neill and Waalewijn, Phys.Rev.Lett. 123 (2019) 14, 142001

-

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

同 ト イ ヨ ト イ ヨ ト

э

This work: entropy in fragmentation functions

同 ト イ ヨ ト イ ヨ ト

Pdfs vs FFs

E nar

4 E 6 4 E 6

DIS and fragmentation in e^-e^+ related by continuation

Drell, Levy, Yan, Phys. Rev. D 6, 1617 (1970)

Proposed relations between pdfs and FFs

• Drell-Levy-Yan relation $D(z) = z f\left(\frac{1}{z}\right)$

Problem: if $z \in [0, 1]$, $\frac{1}{z} \in [1, \infty)$ (unphysical except at $z \to 1$)

- Gribov-Lipatov "reciprocity" relation
 - theoretical status: rather a model
- For z > 0.6 Barone-Drago-Ma eq. $D(z) = z^{2}(0 \frac{1}{2})$

Approximate save $z \rightarrow 1$; but both have physical argument

Proposed relations between pdfs and FFs

• Drell-Levy-Yan relation $D(z) = z f\left(\frac{1}{z}\right)$

Problem: if $z \in [0, 1]$, $\frac{1}{z} \in [1, \infty)$ (unphysical except at $z \to 1$)

• Gribov-Lipatov "reciprocity" relation 3D(z) = f(z)

theoretical status: rather a model

For z > 0.6 Barone-Drago-Ma eq. D(r) < 0

Approximate save $z \rightarrow 1$; but both have physical argument

ъ.

Proposed relations between pdfs and FFs

• Drell-Levy-Yan relation $D(z) = z f\left(\frac{1}{z}\right)$

Problem: if $z \in [0, 1]$, $\frac{1}{z} \in [1, \infty)$ (unphysical except at $z \to 1$)

• Gribov-Lipatov "reciprocity" relation 3D(z) = f(z)

theoretical status: rather a model

For z > 0.6 Barone-Drago-Ma eq. $D(z) \simeq zf \left(2 - \frac{1}{z}\right)$

Approximate save $z \rightarrow 1$; but both have physical argument

NATER ATER TO DOG

FFs from neural network fits in the literature

NNPDF coll. EPJC 77, 516 (2017)

FFs from neural network fits in the literature

NNPDF coll. EPJC 77, 516 (2017)

FFs from neural network fits in the literature

NNPDF coll. EPJC 77, 516 (2017)

Entropy for a continuous probability distribution

Simple discretization fails:

 $zD(z) \rightarrow \{p_1, p_2 \dots p_i \dots p_N\}; \qquad \sum_i p_i = 1$

 $S = -\sum_{i=1}^{\infty} (p_i \log p_i) \longrightarrow \log N \to \infty$

Generalization to a continuum distribution:

 $S(F) := -\int f(x) \ln f(x) \mathrm{d}x$

Entropy for a continuous probability distribution

Simple discretization fails:

 $zD(z) \rightarrow \{p_1, p_2 \dots p_i \dots p_N\}; \qquad \sum_i p_i = 1$ $S = -\sum_{i=1}^N (p_i \log p_i) \xrightarrow{N \to \infty} \log N \to \infty$

Generalization to a continuum distribution:

 $S(F) := -\int f(x) \ln f(x) dx$

Entropy for a continuous probability distribution

Simple discretization fails:

 $zD(z) \to \{p_1, p_2 \dots p_i \dots p_N\}; \qquad \sum_i p_i = 1$ $S = -\sum_{i=1}^N (p_i \log p_i) \xrightarrow{N \to \infty} \log N \to \infty$

Generalization to a continuum distribution:

 $S(F) := -\int f(x) \ln f(x) dx$

Kullback-Leibler divergence

$$D_{ ext{KL}}(P\|Q) \coloneqq \sum_{x} p(x) \log rac{p(x)}{q(x)} o$$

How different are the distributions \boldsymbol{P} and \boldsymbol{Q}

Continuum generalization:

$$D_{ ext{KL}}(F \| G) = \int f(x) \log rac{f(x)}{g(x)} \mathrm{d}x$$

 $S(F) := -\int f(x) \ln f(x) dx$ is then the KL divergence to the uniform distribution (that with least information)

What to do with insufficient data?

$$\sum_{\substack{h \\ \text{Need them all!}}} \int_0^1 z D_h^q(z) dz = 1$$

In practice, have π^{\pm} , K^{\pm} , p and little more...

Split: $D_q(z) = D_a^{\text{measured}}(z) + D_a^{\text{unknown}}(z)$

maximize entropy: uniform distribution remainder),

What to do with insufficient data?

$$\sum_{\substack{h \\ \text{Need them all!}}} \int_0^1 z D_h^q(z) dz = 1$$

In practice, have π^{\pm} , K^{\pm} , p and little more...

Split: $D_q(z) = D_q^{\text{measured}}(z) + D_q^{\text{unknown}}(z)$

$$\sum_{\substack{h \\ \text{neasured}}} \int_0^1 z D_h^q(z) dz = p < 1 \quad \sum_{\substack{h \\ \text{unknown}}} z D_h^q(z) := 1 - p$$

(maximize entropy: uniform distribution remainder)

What would happen with future data? Upper bound on S

What would happened with future data?

- From SU(3) relations + valence/sea separation as customary e.g. D_{d→K⁰} (unknown) set = D_{u→K⁺} (already extracted)
- $\blacktriangleright \ \theta(\eta,\eta') = -15.5^{\circ}$
- S: one number that quantifies progress on Fragmentation Functions

What would happened with future data?

- From SU(3) relations + valence/sea separation as customary e.g. D_{d→K⁰} (unknown) set = D_{u→K⁺} (already extracted)
- $\theta(\eta, \eta') = -15.5^{\circ}$
- S: one number that quantifies progress on Fragmentation Functions

What would happened with future data?

For completeness, the looks of the "reconstructed" FFs:

Click here for animation

Comparison between *Ds* and *FFs*

(Using the proton's NNPDF parametrizations, $Q^2 = 100 {
m GeV}^2$)

F. J. Llanes-Estrada Information entropy and fragmentation functions

Comparison between *Ds* and *FFs*

(Traditional template fit to π^+ data, $Q^2 = 100 \text{GeV}^2$) Jefferson Lab Angular Momentum Collaboration, Phys.Rev.D 104 (2021) 1, 016015

Kullback-Leibler divergence: typical cases

$$D_{\mathrm{KL}} = 0.12$$

$$D_{\rm KL} = 1.63$$

F. J. Llanes-Estrada Information entropy and fragmentation functions

Kullback-Leibler divergence for two relations

Parton	$D_{KL}(zf_{\pi}(z) D^{\pi}(z))$	$D_{KL}(zf_{\pi}(2-1/z) D^{\pi}(z))$
gluon	2,28	7,70
up	1,19	2,36
anti-down	1,19	2,36
down	6,64	5,28
(contribution from $z \in (0.7, 1)$)		

Not well satisfied!

Ratios between *D*s and *FF*s: not 1!

(NLO parametrizations of JAM coll. π^+ data, $Q^2 = 100 {
m GeV}^2$)

Relations between $f_{\pi}^{u}(x)$ and $D_{u}^{\pi}(z)$

Parallel lines in a log-log plot

Barone-Drago-Ma relation off by a multiplicative constant only!

Further approximating $f(2-1/z) \rightarrow f(z)$ not so bad either

A 10

30.00

Slopes (power-law): D(z), 1.48; $zf(2-\frac{1}{z})$, 1.52; zf(z), 1.37

- Information entropy and KL divergence deployed for fragmentation functions
- ► *S* is one number to quantify progress on *FF* knowledge
- ▶ Relations *pdfs* ↔ *FFs* not well satisfied with current sets
- Guess at what's happening? f(x) measured on the proton; but N^{*}, Δ^{*} → p... contribute to D(z), not only p
- Or Barone-Drago-Ma relation trivial and good only at z = 1 exactly?

- - E - - E

- Information entropy and KL divergence deployed for fragmentation functions
- S is one number to quantify progress on FF knowledge
- ▶ Relations *pdfs* ↔ *FFs* not well satisfied with current sets
- Guess at what's happening? f(x) measured on the proton; but N*, Δ* → p... contribute to D(z), not only p
- Or Barone-Drago-Ma relation trivial and good only at z = 1 exactly?

- - E - - E

- Information entropy and KL divergence deployed for fragmentation functions
- S is one number to quantify progress on FF knowledge
- ▶ Relations *pdfs* ↔ *FFs* not well satisfied with current sets
- Guess at what's happening? f(x) measured on the proton; but N*, Δ* → p... contribute to D(z), not only p
- Or Barone-Drago-Ma relation trivial and good only at z = 1 exactly?

4 3 6 4 3

- Information entropy and KL divergence deployed for fragmentation functions
- S is one number to quantify progress on FF knowledge
- ▶ Relations *pdfs* ↔ *FFs* not well satisfied with current sets
- Guess at what's happening? f(x) measured on the proton; but N^{*}, Δ^{*} → p... contribute to D(z), not only p
- Or Barone-Drago-Ma relation trivial and good only at z = 1 exactly?

.

- Information entropy and KL divergence deployed for fragmentation functions
- S is one number to quantify progress on FF knowledge
- ▶ Relations *pdfs* ↔ *FFs* not well satisfied with current sets
- Guess at what's happening? f(x) measured on the proton; but N^{*}, Δ^{*} → p... contribute to D(z), not only p
- Or Barone-Drago-Ma relation trivial and good only at z = 1 exactly?

4 B K 4 B K

Information entropy and fragmentation functions

Felipe J. Llanes-Estrada Guillermo Benito Calviño & Javier García Olivares

Universidad Complutense de Madrid, Departamento de Física Teórica and IPARCOS

 $1/{\rm Aug}/2022$ XV Quark Confinement & Hadron Spectrum

Funding acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093; grants MICINN: PID2019-108655GB-I00, PID2019-106080GB-C21 (Spain); UCM research group 910309 and the IPARCOS institute.

