

$\eta, \eta' \rightarrow \pi^0 \gamma \gamma$ and $\eta' \rightarrow \eta \gamma \gamma$ decays and a leptophobic U(1) B boson

Rafel Escribano UAB and IFAE-BIST

QCHS 2022

XVth Quark Confinement and the Hadron Spectrum Conference

> August 2, 2022 Stavanger (Norway)

What's the motivation for this analysis? Theoretical analysis of the doubly radiative decays $\eta, \eta' \rightarrow \pi^0 \gamma \gamma$ and $\eta' \rightarrow \eta \gamma \gamma$

Decay	Couplings	Chiral loop	LσM	VMD	Г	BR _{th}	BR _{exp} [14]
$\eta \to \pi^0 \gamma \gamma ~(\mathrm{eV})$	Empirical	1.87×10^{-3}	5.0×10^{-4}	0.16(1)	0.18(1)	$1.35(8) \times 10^{-4}$	$2.56(22) \times 10^{-4}$
	Model-based	1.87×10^{-3}	5.0×10^{-4}	0.16(1)	0.17(1)	$1.30(1) \times 10^{-4}$	
$\eta' \to \pi^0 \gamma \gamma$ (keV)	Empirical	1.1×10^{-4}	1.3×10^{-4}	0.57(3)	0.57(3)	$2.91(21) \times 10^{-3}$	$3.20(7)(23) \times 10^{-3}$
	Model-based	1.1×10^{-4}	1.3×10^{-4}	0.70(4)	0.70(4)	$3.57(25) \times 10^{-3}$	
$\eta' \to \eta \gamma \gamma ~({\rm eV})$	Empirical	1.4×10^{-2}	3.29	21.2(1.2)	23.0(1.2)	$1.17(8) \times 10^{-4}$	$8.25(3.41)(0.72) \times 10^{-5}$
	Model-based	1.4×10^{-2}	3.29	19.1(1.0)	20.9(1.0)	$1.07(7) \times 10^{-4}$	

R. Escribano, S. Gonzàlez-Solís, R. Jora and E. Royo, Phys. Rev. D 102 (2020) 034026

What's a leptophobic U(1) B boson?

It is a new gauge boson coupled to the baryon number

$$\mathcal{L} = \frac{1}{3} g_B \bar{q} \gamma^\mu q B_\mu \qquad \qquad \alpha_B \equiv g_B^2 / (4\pi)$$

The low-energy symmetries of QCD are preserved

C and **P** are conserved

B does not transform under **SU(3)** flavour symmetry

B is a singlet under isospin

$$I^G(J^{PC}) = 0^-(1^{--})$$
 B is ω meson like!

What's a leptophobic U(1) B boson?

B is not completely decoupled from leptons

with a "natural"-sized $\varepsilon = eg_B/(4\pi)^2$ induced radiatively

What's the motivation for a U(1) B boson?

- The baryon number symmetry may be related to dark matter (it is stabilised since it carries a conserved baryon number charge)
- Natural framework for the Peccei-Quinn solution to the strong CP problem

How are hadronic processes calculated?

Using the hidden local symmetry (HLS) for VMD

$$\mathscr{L}_{VVP} = \frac{G}{\sqrt{2}} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left[\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right] \text{ with } G = \frac{3g^2}{4\pi^2 f_{\pi}}$$

P is the pseudoscalar meson nonet

V is the vector meson nonet (gauge bosons of a hidden U(3)_v symmetry)

In conventional VMD:

$$\mathscr{L}_{V\gamma} = -4egf_{\pi}^2 A^{\mu} \operatorname{tr}\left[QV_{\mu}\right]$$

$$\mathscr{L}_{VB} = -4\frac{1}{3}g_Bgf_\pi^2 B^\mu \mathrm{tr}[V^\mu]$$

How are hadronic processes calculated?

S. Tulin, Phys. Rev. D 89 (2014) 114008

Previous estimates

S. Tulin, Phys. Rev. D 89 (2014) 114008

Present estimates from this analysis

latest experimental BRs

R. Escribano, S. Gonzàlez-Solís and E. Royo, arXiv: 2207.14263 [hep-ph]

However, a lot more can be done nowadays!

Using the new BR value and spectrum from KLOE for

$$\eta
ightarrow \pi^0 \gamma \gamma$$
 B. Cao [KLOE-2], PoS EPS-HEP2021 (2022) 409 E. Pérez del Rio, CD21

Using the recent BR value and spectrum from BESIII for

 $\eta'
ightarrow \pi^0 \gamma \gamma$ M. Ablikim *et. al.* [BESIII], Phys. Rev. D 96 (2017) 012005

Using the recent BR value from BESIII for

 $\eta'
ightarrow \eta \gamma \gamma$ M. Ablikim *et. al.* [BESIII], Phys. Rev. D 100 (2019) 052015

How are these processes calculated?

How are these processes calculated?

B boson width:

$$\begin{split} \Gamma_{B}(t) &= \frac{\tilde{\gamma}_{B \to e^{+}e^{-}}(t)}{\tilde{\gamma}_{B \to e^{+}e^{-}}(m_{B}^{2})} \Gamma_{B \to e^{+}e^{-}} \theta(t - 4m_{e}^{2}) + \frac{\tilde{\gamma}_{B \to \pi^{0}\gamma}(t)}{\tilde{\gamma}_{B \to \pi^{0}\gamma}(m_{B}^{2})} \Gamma_{B \to \pi^{0}\gamma} \theta(t - m_{\pi^{0}}^{2}) + \frac{\tilde{\gamma}_{B \to \mu^{+}\mu^{-}}(t)}{\tilde{\gamma}_{B \to \mu^{+}\mu^{-}}(m_{B}^{2})} \Gamma_{B \to \mu^{+}\mu^{-}} \theta(t - 4m_{\mu}^{2}) \\ &+ \frac{\tilde{\gamma}_{B \to \pi^{+}\pi^{-}}(t)}{\tilde{\gamma}_{B \to \pi^{+}\pi^{-}}(m_{B}^{2})} \Gamma_{B \to \pi^{+}\pi^{-}} \theta(t - 4m_{\pi}^{2}) + \frac{\tilde{\gamma}_{B \to \pi^{+}\pi^{-}\pi^{0}}(t)}{\tilde{\gamma}_{B \to \pi^{+}\pi^{-}\pi^{0}}(m_{B}^{2})} \Gamma_{B \to \pi^{+}\pi^{-}\pi^{0}} \theta(t - 9m_{\pi}^{2}) \,, \end{split}$$

New exclusion plots

 $BR(PDG) = (2.56 \pm 0.22) \times 10^{-4}$ $BR(KLOE) = (1.23 \pm 0.14) \times 10^{-4}$

P. A. Zyla et. Al. [PDG], PTEP 2020 (2020) 093C01

B. Cao [KLOE-2], PoS EPS-HEP2021 (2022) 409

R. Escribano, S. Gonzàlez-Solís and E. Royo, arXiv: 2207.14263 [hep-ph]

New exclusion plots

 $\eta' \to \pi^0 \gamma \gamma$

 $\rightarrow \eta \gamma \gamma$

BR(BESIII) = $(3.20 \pm 0.07 \pm 0.23) \times 10^{-3}$

M. Ablikim et. al. [BESIII], Phys. Rev. D 96 (2017) 012005

BR(BESIII) = $(8.25 \pm 3.41 \pm 0.72) \times 10^{-3}$

M. Ablikim et. al. [BESIII], Phys. Rev. D 100 (2019) 052015

R. Escribano, S. Gonzàlez-Solís and E. Royo, arXiv: 2207.14263 [hep-ph]

Are peaks in the π⁰γ mass distribution seen?

Fits to the yy mass distribution

Crystal Ball: $\alpha_B = 0.40^{+0.07}_{-0.08}, \quad m_B = 583^{+32}_{-20} \text{ MeV} \qquad \chi^2_{\min}/\text{dof} = 0.4/5 = 0.1$ **KLOE:** $\alpha_B = 0.049^{+40}_{-27}, \quad m_B = 135^{+1}_{-135} \text{ MeV} \qquad \chi^2_{\min}/\text{dof} = 4.5/5 = 0.9$

Fits to the yy mass distribution

BESII: $\alpha_B = 0.005(1)$, $m_B = 759(1)$ MeV $\alpha_B = 0.018(5)$, $m_B = 156^{+5}_{-1}$ MeV $\chi^2_{\text{min}}/\text{dof} = 11.7/11 = 1.1$ $\chi^2_{\text{min}}/\text{dof} = 12.5/11 = 1.1$

Fits to the yy mass distribution

Joint Fit

BESIII data dominates the fit

Conclusions

- The sensitivity of the rare decays $\eta, \eta' \to \pi^0 \gamma \gamma$ and $\eta' \to \eta \gamma \gamma$ to a leptophobic U(1) B boson in the mass range MeV-GeV has been analysed in detail
- Stringent limits on the B boson parameters m_B and α_B have been found
- The current constraints have been strengthened by one order of magnitude from $\eta \to \pi^0 \gamma \gamma$
- These constraints would make a B-boson signature strongly suppressed

Backup slides

Backup slides

Backup slides

