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Motivation

Peccei-Quinn scenario for solving strong CP-problem
Axion mass purely QCD quantity: f2am2(T) = x(T")
Scale of U(1)pg breaking: f4, large

Lattice determination of x(T'): constraints on axion mass



Motivation

Lattice calculation of x(7T') very challenging

T his conference:

e AXion round table today: Claudio Bonati, Francesco D'Eramo,
Guido Martinelli, DN

e Parallel talk 4:30 PM today: Claudio Bonati

Useful: comparison with semi-classical results at high T



Motivation

Goal: get reliable semi-classical results
You would think: this was already done a long time ago
You would be mostly right

But not completely



Summary

Within semi-classical approximation

e More precise temperature dependence than previously

e Correct over-all prefactor for x(7T) in MS

e Error budget from scale

And some historical remarks for your amusement :)



Semi-classical calculation
Reliable at high T

Temperature dependence of instanton size distribution

n(o,T) = n(g)e*(meh)

e n(p): T = 0 instanton calculation
e S()\): determined by function A(\), A\ = woT

— Need two ingredients: T'= 0 results and 7" > 0 dependence



Semi-classical calculation 1T'= 0

Zero temperature 1-loop with light fermions, m;/T, m;/\ < 1

n(o) = C (16”2)”@% L (o T Comi)
0 2(0) ,5 (on 1 om;(p

g(p) running coupling, m;(x) running masses

Over-all constant coefficient C' i1s scheme-dependent, because
renormalization is defined in a particular scheme

Frequently used schemes: Pauli-Villars, MS, MS, etc.



Semi-classical calculation T'=0

1672\ " —8& 1 ali
e 9-(pn) — B1 m:
92<M>> 5 (op) i];ll(@ (1))

n(e) =C (
Result for C in Pauli-Villars and SU(2):

G. 't Hooft
Phys. Rev. D 14, 3432 (1976)
erratum: Phys. Rev. D 18, 2199 (1978)

Result for C in Pauli-Villars and SU(N)

C. W. Bernard
Phys. Rev. D 19, 3013 (1979)



Semi-classical calculation 1T'= 0

P 9

167T2>2N o 82 1 Nf

n = e 92 () — b1 1M
(o) =C (gQ(u) 25 (er)™t 1] (omi(p))

=1
More frequently used schemes: MS and MS

Need to convert C to these schemes

Need to know A-parameter ratios



Scheme change
Needed: Apy/Ams, first given in original
G. 't Hooft, Phys. Rev. D 14, 3432 (1976)
Unfortunately incorrect (not in erratum either...)
Correct result
Apv _ 3(log(4m) -+
AMS
A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B, 165 (1980)

Confirmed in G. 't Hooft, Phys. Rept. 142, 357 (1986)



Scheme change

Note: incorrect A-parameter ratios in

P. Weisz, Phys. Lett. 100B, 331 (1981)

R. F. Dashen and D. J. Gross, Phys. Rev. D 23, 2340 (1981)

NoO erratums...



Scheme change
In any case, MS result correct since Hasenfratz-Hasenfratz 1980
Most frequently used: MS

Conversion MS — MS should be straightforward

AMS _ i(log(4m)—) Apv _
Ams AV



MS scheme
Explicitly reported in MS

A. Ringwald and F. Schrempp, Phys. Lett. B 438, 217 (1998)
[hep-ph/9806528]

Unfortunately incorrect, never corrected before

eco—l—clN—l—csz
(N = 1DI(N = 2)!

co and cq correct, but co reported incorrectly
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S scheme

£C0 Fc1N+coNy

~ (N - 1)I(N —2)!

C

Problem: MS — MS conversion involves 31 which depends on N,
conversion used pure Yang-Mills 31: ¢co incorrect

Mismatch: 3i
% from MS-MS

W
|

255 where 2 from N;-dependence of -function,
NA-parameter ratio

Ringwald-Schrempp used in most (all?) lattice comparisons



<

S scheme

Furthermore, another wrong co, reported in

S. Moch, A. Ringwald and F. Schrempp, Nucl. Phys. B 507, 134
(1997) [hep-ph/9609445]

I. I. Balitsky and V. M. Braun, Phys. Rev. D 47, 1879 (1993)



First correct MS result

eCo+ClN+CQNf
Ceoe =
MS (N — 1)I(N —2)!
5
cg = g—l—logQ—QIogw = —0.76297926
11 11
c1 = 4@’(—1)+ - log2 = —2.89766868
67 1
= —4¢(-1)————Z1log2 = 0.26144360
o ¢'(—1) 206 399

Ringwald-Schrempp: co = 0.291746

Moch-Ringwald-Schrempp, Balitsky-Braun: ¢, = 0.153



First correct MS result

1672\ " &2 1 i
n(o) = Cyg (92(u)> e 92 5 (o)™ .l;Il(sz’(/J))

Finally T = 0 instanton size distribution in MS at 1-loop

Once Cyzg okay, (partial) 2-loop result from literature can be taken
over



Semi-classical calculation 7" > 0
n(o, T) = n(g)e W A= moT

S(A) = %A2(2N + Ny) + 12A(N) <1 + %)

D. J. Gross, R. D. Pisarski and L. G. Yaffe
Rev. Mod. Phys. 53, 43 (1981)



Semi-classical calculation T°> 0

1
1672

12A()) =

/Sl><R3( N2 >_/R4 I_I%

2
e Mg from 1-insanton solution on R*: Mg =1+ ;%>

e [1is from Harrington-Sheppard 1-instanton solution on Sl x R3



Semi-classical calculation T" > 0

Because of spherical symmetry, A(\) is a 2-dimensional integral

Analytically not possible, numerical form from Gross-Pisarski-Yaffe:

A2 12a
12Agpy()\) = —log <1 + —) + 3
3 (1 _|_7>\—3/2)
a = 0.01289764 ~ = 0.15858

Claimed absolute numerical uncertainty: 6-10—%
Once A()) is known, the full x(7T') is known semi-classically

Above Aqpy used in all works



New results for A(\)

Main motivation was to understand the peculiar form of A()\)

In Gross-Pisarski-Yaffe no details are given

Technically: difference of two 2D integrals, both are divergent,
difference finite

We do three things:

e Evaluate numerically to high precision

e ODbtain analytic A< 1 and A\ > 1 series

e Fit numerical result with simple function



New results for A(\)

Numerical evaluation, O(100) significant digits

35 T T T T 04 T
3L il 0.35 |-
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Work out small A and large A asymptotics



New results for A(\) - asymptotics

A<< 1
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These look good - let's compare with

A>>1
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New results for A(\) - comparison with GPY

Absolute error
0.1 T T

0.08

0.06

0.04

12 Agpy(\) — 12 A())

0.02

3 - 10—2, two orders of magnitude worse than claimed!

GPY: 2D integral numerically on computers of 80’s ...



New results for A(\) - useful parametrization

—12Aparam(X) = polog(1l + p1>\2 + p2>\4 + p3>‘6 + p4>‘8)
po = 0.247153244, p1 = 1.356391323

po = 0.675021523, p3 = 0.145446632, pgq = 0.008359667

Absolute precision 2-10~%

Biggest deviation from GPY: A = O(1) because of large cancella-
tions inside I(r) — the most sensitive region for pg-integral in x(7T)
— potentially large effect



Absolute and relative precision

Absolute precision on A(\) —

—12A()\) <1+N6Nf)
Relative precision on n(p,T) ~ e —

Relative precision on x(T)

Discrepancy Agpy VS. our Apgram in x(71):
e SU(3) Ny =0,2,3,4: 10%, 7%, 6%, 4%
e SU(10) pure Yang-Mills: 22%

e SU(20) pure Yang-Mills: 40% (scales with N)



Accounting for T'= 0 and 71" > O discrepancies in QCD

T =0 from Cgg: approx 5% (correct smaller)
T > 0 from A()\): approx 5% (correct larger)
But in opposite directions ... nearly cancel
Eventually very small effect in QCD

But at least now the semi-classical result is fully correct



One last thing...

Semi-classical result analytic but still has uncertainty

e i -dependence, choice for 3, 4, 5-loop running, etc. — very
small

e Scale — dominant



Scale in semi-classical result

Pure Yang-Mills

Units in T, — need T;/Ag;g = 1.26(7) — came from lattice — has
uncertainty — surprisingly large in xy because of high power of T

T/T. = 4.1
Iog(X/Tf')‘lat = —12.47(12)
log(x/TH) = —13.80(10)(40)

lat: Jahn Moore Robaina, Phys.Rev.D 98 (2018) 5, 054512, 1806.01162

Deviation within 3o



Scale in semi-classical result
QCD

Units in Aggs = 292(16)MeV PDG, even higher power of T'in x

T

4
log(x/MeV®)|
IOg(X/MeV4)

2GeV
3.99(68)

= 1.15(3)(46)

inst
lat: Borsanyi et al., Nature 539, no. 7627, 69 (2016), 1606.07494

Deviation about 3.5¢



Summary

e Obtained n(p,T) at high temperature semi-classically in MS

e Makes x(7T) comparison with lattice possible

e Dominant uncertainty from scale

e Exactly zero new or original idea :)



Thank you for your attention!



