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Motivation

Peccei-Quinn scenario for solving strong CP-problem

Axion mass purely QCD quantity: f2
Am

2
A(T ) = χ(T )

Scale of U(1)PQ breaking: fA, large

Lattice determination of χ(T ): constraints on axion mass



Motivation

Lattice calculation of χ(T ) very challenging

This conference:

• Axion round table today: Claudio Bonati, Francesco D’Eramo,

Guido Martinelli, DN

• Parallel talk 4:30 PM today: Claudio Bonati

Useful: comparison with semi-classical results at high T



Motivation

Goal: get reliable semi-classical results

You would think: this was already done a long time ago

You would be mostly right

But not completely



Summary

Within semi-classical approximation

• More precise temperature dependence than previously

• Correct over-all prefactor for χ(T ) in MS

• Error budget from scale

And some historical remarks for your amusement :)



Semi-classical calculation

Reliable at high T

Temperature dependence of instanton size distribution

n(%, T ) = n(%)e−S(π%T )

• n(%): T = 0 instanton calculation

• S(λ): determined by function A(λ), λ = π%T

→ Need two ingredients: T = 0 results and T > 0 dependence



Semi-classical calculation T = 0

Zero temperature 1-loop with light fermions, mi/T,mi/Λ� 1

n(%) = C

(
16π2

g2(µ)

)2N

e
− 8π2

g2(µ)
1

%5
(%µ)β1

Nf∏
i=1

(%mi(µ))

g(µ) running coupling, mi(µ) running masses

Over-all constant coefficient C is scheme-dependent, because

renormalization is defined in a particular scheme

Frequently used schemes: Pauli-Villars, MS, MS, etc.



Semi-classical calculation T = 0
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Result for C in Pauli-Villars and SU(2):

G. ’t Hooft

Phys. Rev. D 14, 3432 (1976)

erratum: Phys. Rev. D 18, 2199 (1978)

Result for C in Pauli-Villars and SU(N)

C. W. Bernard

Phys. Rev. D 19, 3013 (1979)



Semi-classical calculation T = 0

n(%) = C
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More frequently used schemes: MS and MS

Need to convert C to these schemes

C1 = C2

(
Λ2

Λ1

)β1

Need to know Λ-parameter ratios



Scheme change

Needed: ΛPV /ΛMS, first given in original

G. ’t Hooft, Phys. Rev. D 14, 3432 (1976)

Unfortunately incorrect (not in erratum either...)

Correct result

ΛPV

ΛMS
= e

1
2(log(4π)−γ)+ 1

22

A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B, 165 (1980)

Confirmed in G. ’t Hooft, Phys. Rept. 142, 357 (1986)



Scheme change

Note: incorrect Λ-parameter ratios in

P. Weisz, Phys. Lett. 100B, 331 (1981)

R. F. Dashen and D. J. Gross, Phys. Rev. D 23, 2340 (1981)

No erratums...



Scheme change

In any case, MS result correct since Hasenfratz-Hasenfratz 1980

Most frequently used: MS

Conversion MS →MS should be straightforward

ΛMS

ΛMS
= e

1
2(log(4π)−γ) ΛPV

ΛMS

= e
1

22



MS scheme

Explicitly reported in MS

A. Ringwald and F. Schrempp, Phys. Lett. B 438, 217 (1998)

[hep-ph/9806528]

Unfortunately incorrect, never corrected before

C =
ec0+c1N+c2Nf

(N − 1)!(N − 2)!

c0 and c1 correct, but c2 reported incorrectly



MS scheme

C =
ec0+c1N+c2Nf

(N − 1)!(N − 2)!

Problem: MS →MS conversion involves β1 which depends on Nf ,

conversion used pure Yang-Mills β1: c2 incorrect

Mismatch: 1
33 = 2

3 ·
1

22 where 2
3 from Nf-dependence of β-function,

1
22 from MS-MS Λ-parameter ratio

Ringwald-Schrempp used in most (all?) lattice comparisons



MS scheme

Furthermore, another wrong c2 reported in

S. Moch, A. Ringwald and F. Schrempp, Nucl. Phys. B 507, 134

(1997) [hep-ph/9609445]

I. I. Balitsky and V. M. Braun, Phys. Rev. D 47, 1879 (1993)



First correct MS result

CMS =
ec0+c1N+c2Nf

(N − 1)!(N − 2)!

c0 =
5

6
+ log 2− 2 logπ = −0.76297926

c1 = 4ζ′(−1) +
11

36
−

11

3
log 2 = −2.89766868

c2 = −4ζ′(−1)−
67

396
−

1

3
log 2 = 0.26144360

Ringwald-Schrempp: c2 = 0.291746

Moch-Ringwald-Schrempp, Balitsky-Braun: c2 = 0.153



First correct MS result

n(%) = CMS

(
16π2

g2(µ)

)2N

e
− 8π2

g2(µ)
1

%5
(%µ)β1

Nf∏
i=1

(%mi(µ))

Finally T = 0 instanton size distribution in MS at 1-loop

Once CMS okay, (partial) 2-loop result from literature can be taken

over



Semi-classical calculation T > 0

n(%, T ) = n(%)e−S(λ) λ = π%T

S(λ) =
1

3
λ2(2N +Nf) + 12A(λ)

(
1 +

N −Nf
6

)

D. J. Gross, R. D. Pisarski and L. G. Yaffe

Rev. Mod. Phys. 53, 43 (1981)



Semi-classical calculation T > 0

12A(λ) =
1

16π2

∫
S1×R3

(
∂µΠ∂µΠ

Π2

)2
−
∫
R4

(
∂µΠ0∂µΠ0

Π2
0

)2


• Π0 from 1-insanton solution on R4: Π0 = 1 + %2

t2+r2

• Π is from Harrington-Sheppard 1-instanton solution on S1×R3



Semi-classical calculation T > 0

Because of spherical symmetry, A(λ) is a 2-dimensional integral

Analytically not possible, numerical form from Gross-Pisarski-Yaffe:

12AGPY (λ) = − log

(
1 +

λ2

3

)
+

12α(
1 + γλ−3/2

)8

α = 0.01289764 γ = 0.15858

Claimed absolute numerical uncertainty: 6 · 10−4

Once A(λ) is known, the full χ(T ) is known semi-classically

Above AGPY used in all works



New results for A(λ)

Main motivation was to understand the peculiar form of A(λ)

In Gross-Pisarski-Yaffe no details are given

Technically: difference of two 2D integrals, both are divergent,

difference finite

We do three things:

• Evaluate numerically to high precision

• Obtain analytic λ� 1 and λ� 1 series

• Fit numerical result with simple function



New results for A(λ)

Numerical evaluation, O(100) significant digits
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Work out small λ and large λ asymptotics



New results for A(λ) - asymptotics
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These look good - let’s compare with Gross-Pisarski-Yaffe



New results for A(λ) - comparison with GPY
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Absolute error

8 · 10−2, two orders of magnitude worse than claimed!

GPY: 2D integral numerically on computers of 80’s ...



New results for A(λ) - useful parametrization

−12Aparam(λ) = p0 log(1 + p1λ
2 + p2λ

4 + p3λ
6 + p4λ

8)

p0 = 0.247153244, p1 = 1.356391323

p2 = 0.675021523, p3 = 0.145446632, p4 = 0.008359667

Absolute precision 2 · 10−4

Biggest deviation from GPY: λ = O(1) because of large cancella-

tions inside I(r) → the most sensitive region for %-integral in χ(T )

→ potentially large effect



Absolute and relative precision

Absolute precision on A(λ) →

Relative precision on n(%, T ) ∼ e
−12A(λ)

(
1+

N−Nf
6

)
→

Relative precision on χ(T )

Discrepancy AGPY vs. our Aparam in χ(T ):

• SU(3) Nf = 0,2,3,4: 10%, 7%, 6%, 4%

• SU(10) pure Yang-Mills: 22%

• SU(20) pure Yang-Mills: 40% (scales with N)



Accounting for T = 0 and T > 0 discrepancies in QCD

T = 0 from CMS: approx 5% (correct smaller)

T > 0 from A(λ): approx 5% (correct larger)

But in opposite directions ... nearly cancel

Eventually very small effect in QCD

But at least now the semi-classical result is fully correct



One last thing...

Semi-classical result analytic but still has uncertainty

• µ-dependence, choice for 3, 4, 5-loop running, etc. → very

small

• Scale → dominant



Scale in semi-classical result

Pure Yang-Mills

Units in Tc → need Tc/ΛMS = 1.26(7) → came from lattice → has

uncertainty → surprisingly large in χ because of high power of T

T/Tc = 4.1

log(χ/T4
c )
∣∣∣
lat

= −12.47(12)

log(χ/T4
c )
∣∣∣
inst

= −13.80(10)(40)

lat: Jahn Moore Robaina, Phys.Rev.D 98 (2018) 5, 054512, 1806.01162

Deviation within 3σ



Scale in semi-classical result

QCD

Units in ΛMS = 292(16)MeV PDG, even higher power of T in χ

T = 2GeV

log(χ/MeV 4)
∣∣∣
lat

= 3.99(68)

log(χ/MeV 4)
∣∣∣
inst

= 1.15(3)(46)

lat: Borsanyi et al., Nature 539, no. 7627, 69 (2016), 1606.07494

Deviation about 3.5σ



Summary

• Obtained n(%, T ) at high temperature semi-classically in MS

• Makes χ(T ) comparison with lattice possible

• Dominant uncertainty from scale

• Exactly zero new or original idea :)



Thank you for your attention!


