Direct CP violation in $K \rightarrow \pi \pi$ decay at the physical point with periodic BCs

Masaaki Tomii (UConn)

XVth Quark Confinement and the Hadron Spectrum August 1–6, 2021

The RBC & UKQCD collaborations

UC Berkeley/LBNL Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung

Christopher Kelly Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

CERN

Andreas Jüttner (Southampton)

Columbia University

Norman Christ Duo Guo Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Ahmed Sheta Bigeng Wang Tianle Wang Yidi Zhao

Tom Blum Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

KEK Julien Frison

University of Liverpool Nicolas Garron

Michigan State University Dan Hoying

University of Connecticut

Luchang Jin (RBRC) Michael Riberdy

<u>Milano Bicocca</u> Mattia Bruno

Peking University

Xu Feng

University of Regensburg

Davide Giusti Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen Alessandro Barone Jonathan Flynn Ryan Hill Rajnandini Mukherjee Chris Sachrajda

University of Southern Denmark

Tobias Tsang

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

$K \rightarrow \pi \pi \& Direct CPV$

- ε' vs ε
 - Re $(\epsilon'/\epsilon)_{exp} = 16.6(2.3) \times 10^{-4}$ (KTeV, NA48)
 - Explained by SM?
- Key to understanding the nature of matter/anti-matter asymmetry

XVth Quark Confinement and the Hadron Spectrum Masaaki Tomii (UConn) **G-parity BC calculation done**

- $E_{\pi\pi} = 2m_{\pi} \approx 280$ MeV state in Euclidean correlators forbidden
- Useful to extract $E_{\pi\pi} = m_K$ state at large time separations

XVth Quark Confinement and the Hadron Spectrum Masaaki Tomii (UConn) G-parity BC calculation done

- $E_{\pi\pi} = 2m_{\pi} \approx 280$ MeV state in Euclidean correlators forbidden
- Useful to extract $E_{\pi\pi} = m_K$ state at large time separations

XVth Quark Confinement and the Hadron Spectrum Masaaki Tomii (UConn) **G-parity BC calculation done**

- $E_{\pi\pi} = 2m_{\pi} \approx 280$ MeV state in Euclidean correlators forbidden
- Useful to extract $E_{\pi\pi} = m_K$ state at large time separations

PRD 102,054509

Why periodic BCs?

- Already have lattice ensembles with physical pion mass
 - 1.0 GeV, 24³ x 64 & 1.4 GeV, 32³ x 64 & ...
 - Continuum limit possible
- Hope to introduce QED/IB effects near future
 - Difficult with G-parity BCs
 - Straightforward with periodic BCs
- Presence of $E_{\pi\pi} = 2m_{\pi}$ state challenging

 - interesting to see if it's possible to extract signal of excited state

• S/N ratio of $E_{\pi\pi} = m_K$ state should be the same as in G-parity BCs: $\sim e^{-(m_K - 2m_\pi)t}$

Lattice setup

- RBC/UKQCD's 2+1-flavor ensembles with MDWFs at physical pion & kaon masses
 - $24^3 \times 64$, $a^{-1} = 1.0$ GeV, ~250 confs
 - $32^3 \times 64$, $a^{-1} = 1.4$ GeV, ~100 confs
- Chiral symmetry of DWFs \rightarrow strong constraints on operator mixings • with lower-dimensional operators

 - among different representations WRT chiral symmetry (8,1), (8,8) & (27,1)

What to calculate

 $\pi\pi$ phase shifts

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) = \operatorname{Re}\left\{\frac{\mathrm{i}\omega \mathrm{e}^{\mathrm{i}\delta_{2}-\delta_{0}}}{\sqrt{2}\epsilon}\left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}}\right]\right\}$$

Lellouch-Lüscher finite volume correction

$$A_{I} = \underbrace{F}_{2} G_{F} V_{us}^{*} V_{ud} \sum_{i,j} [z_{i}(\mu)]$$
Wilse

- $A_I = \langle (\pi \pi)_I | H_W | K \rangle$ from 3pt correlation functions
- I = 0 challenging disconnected diagrams, power divergences

$$-\frac{\mathrm{Im}\,\mathsf{A}_0}{\mathrm{Re}\,\mathsf{A}_0}\right]\bigg\}\qquad\qquad(\omega=\mathrm{Re}\,\mathsf{A}_2/\mathrm{Re}\,\mathsf{A}_0)$$

• δ_I , F being determined via π - π scattering work w/ GEVP & Lüscher formalism

For extraction of ground-state ME

$$\mathsf{M}^{\mathsf{eff}}(\mathsf{t}_{2},\mathsf{t}_{1}) = \mathsf{C}^{(3)}(\mathsf{t}_{2},\mathsf{t}_{1}) \left[\frac{\mathsf{e}^{\mathsf{E}^{\pi}\pi}\mathsf{t}_{2}}{\mathsf{C}^{\pi}\pi}(\mathsf{t}_{2})\mathsf{C}^{\mathsf{K}}(\mathsf{t}_{2},\mathsf{t}_{2}) \mathsf{K}(\mathsf{t}_{2},\mathsf{t}_{2}) \mathsf$$

Excited ππ state needed for on-shell kinematics with PBCs

$$\mathsf{M}_{n}^{\mathsf{eff}}(\mathsf{t}_{2},\mathsf{t}_{1}) = \mathsf{C}_{n}^{(3)}(\mathsf{t}_{2},\mathsf{t}_{1}) \left[\frac{\mathsf{e}^{\mathsf{E}_{n}^{\pi}\mathsf{t}_{2}}\mathsf{e}^{\mathsf{E}^{\mathsf{K}}\mathsf{t}_{2}}}{\mathsf{C}_{n}^{\pi\pi}(\mathsf{t}_{2})\mathsf{C}^{\mathsf{K}}(\mathsf{t}_{2})} \right]$$

 $C_n^{(3)}$: K $\rightarrow \pi\pi$ 3-pt function with $\pi\pi$ operator used in $C_n^{\pi\pi}$

Matrix elements

$$\xrightarrow{\mathsf{large} \ \mathsf{t}_1 \ \& \ \mathsf{t}_2} \to \mathsf{M}$$

$$\xrightarrow{\mathsf{large} t_1 \And t_2} \mathsf{M}_{\mathsf{n}}$$

 $C_n^{\pi\pi}$: 2-pt function of $\pi\pi$ operators that couple only with $|E_n^{\pi\pi}\rangle \& |E > E_{max}^{\pi\pi}\rangle$

State decompositions

• 2pt functions of interpolation operators:

$$C_{ab}(t) = \langle O_a(t) O_b(0)^\dagger \rangle = \sum_n A_{n,a} A_{n,b}^* e^{-E_n t}$$

Good combinations of interpolation operators:

$$\begin{split} O_{a} &\to O_{n}' = \sum_{a} v_{n,a}^{*} O_{a} \\ & C_{n}'(t) = \sum_{a,b} v_{n,a}^{*} C_{ab}(t) v_{n,b} = A_{n}' A_{n}'^{*} e^{-E_{n}t} + O(e^{-E_{N+1}t}) \end{split}$$

 $C(t)v_n(t,t_0) = \lambda_n(t,t_0)C(t_0)v_n(t,t_0)$

v_{n,a} well determined by solving GEVP (Generalized Eigenvalue Problem)

ππ states

- Effective $\pi\pi$ energies from 2pt functions
- Used GEVP with some improvements

XVth Quark Confinement and the Hadron Spectrum Masaaki Tomii (UConn)

Paper on this topic in preparation

$K \rightarrow \pi \pi calculation$

- 258 configurations (on 24³x64), physical pion & kaon masses
- All-to-all quark propagators

 - 2,000 low modes for light quarks (no low mode for strange) • high-mode part: spin, color and time dilutions =>768 inversions
- 28 (5 independent) interpolation $\pi\pi$ operators
 - $\pi_{p=(0,0,0)}\pi_{p=(0,0,0)}, \ \pi_{p=(0,0,1)}\pi_{p=(0,0,-1)}, \ \pi_{p=(0,1,1)}\pi_{p=(0,-1,-1)}, \ \pi_{p=(1,1,1)}\pi_{p=(-1,-1,-1)} \ \& \ \sigma$
 - to control effects from various states

4 types of diagrams

type 4

12/18

Subtraction of quadratic divergence

- operators
- Subtraction
 - $\mathbf{Q}'_{\mathbf{i}} = \mathbf{Q}_{\mathbf{i}} \alpha_{\mathbf{i}} \, \mathbf{\bar{s}} \gamma_{\mathbf{5}} \mathbf{d}$
 - Condition: $\langle Q'_i(t)K(0)^{\dagger} \rangle = 0$
- Additional contractions

Loop diagrams (types3,4) have a⁻² divergence due to mixing with bilinear

Effective matrix elements ($\Delta I = 3/2$)

- Plateau appears
- Global fit with various $t_{\pi\pi}-t_K$, $t_{\pi\pi}-t_{op}$ \bullet

Effective matrix elements ($\Delta I = 1/2$)

- Plateau appears
- Global fit with various $t_{\pi\pi}-t_{K}$, $t_{\pi\pi}-t_{op}$ \bullet

Fit results ($\Delta I = 1/2$)

Fit range-dependence

• No obvious dependence on fit range for min($t_{\pi\pi}-t_K$), min($t_{\pi\pi}-t_{op}$) ≥ 3

Precision performance

Fascinating precision performance compared to G-parity calculation

BCs ork)	24^3 Periodic BCs	32^3 Periodic BCs (w/o AMA correction)
	258	107
	14%	14%
	8.9%	11%
	13%	14%

Preliminary

17/18

Summary

- Purpose lacksquare
 - New independent calculation of $K \rightarrow \pi\pi$ decays
 - to get measure of direct CPV
 - Periodic-BC study gives prospect of introducing QED/IB effects
- On-shell final state = 1st excited state
 - Interesting challenge to extract signal of excited state
 - GEVP works
 - Perhaps more efficient than previous G-parity calculation
- First results being summarized

