NEUTRON STARS IN HARD-WALL HQCD

Lorenzo Bartolini – Henan University, School of Mathematics and Statistics

Work in collaboration with: S. B. Gudnason, J. Leutgeb, A. Rebhan

XVth Quark Confinement and the Hadron Spectrum Conference

University of Stavanger, August 1, 2022

NEUTRON STARS

- Remnants of supernovae of supergiant stars.
- Most compact astrophysical objects (excluding BHs)
- Tolman-Oppenheimer-Volkov equations:

 $\frac{dP}{dr} = -G(\varepsilon + P)\frac{m + 4\pi r^3 P}{r(r - 2Gm)},$ $\frac{dm}{dr} = 4\pi r^2 \varepsilon.$

 PROBLEM: equation of state P(ε) for nuclear matter is not known at such densities.

OBSERVATIONAL BOUNDS

- RADIUS:
- 1. 11.4 to 13.7 km for stars of about 2.1 M_{\odot} (PSR J0740+6620)
- 2. 12.2 to 16.3 km for stars of about 2.1 M_{\odot} (PSR J0740+6620)
- 3. 11.5 to 13.9 km for stars of about 1.4 M_{\odot} (J0030+0451)
- 4. 12.0 to 14.3 km for stars of about 1.4 M_{\odot} (J0030+0451)
- MASS: maximum measured is 2.08 ± 0.07 M $_{\odot}$ (PSR J0740+6620)

• TIDAL DEFORMABILITY: 70 to 620 for stars of about 1.4 M_{\odot} (GW170817)

HOLOGRAPHY IN ONE PAGE

- Duality between a QFT in flat spacetime and (Super-)gravity in higher dimension.
- Weak/Strong duality: can study strong interactions with weakly coupled gravity.
- Has natural field of application where LQCD and perturbative QCD fail to be precise: finite chemical potential, low energy.
- Top-down models: embedded into string theory.
- Bottom-up models: cook up a geometry and a handful of free parameters to fit data.

SOME HOLOGRAPHIC RESULTS WITH NEUTRON STARS:

• D3-D7

- 1. [C. Hoyos, D. Rodríguez Fernández, N. Jokela, A. Vuorinen]
- 2. [K. B. Fadafan, J. C. Rojas, N. Evans]
- D4-D8 [N. Kovensky, A. Poole, A. Schmitt]
- VQCD [N. Jokela, M. Järvinen, J. Remes]
- Hard-Wall [L.B., S. B. Gudnason, J. Leutgeb, A. Rebhan]

MERGER EVENTS SIMULATIONS FROM HOLOGRAPHY:

- VQCD [C. Ecker, M. Järvinen, G. Nijs, W. van der Schee]
- Hard-Wall [L.B., S. B. Gudnason, J. Leutgeb, A. Rebhan]

THIS TALK

HARD-WALL MODEL (T=0)

• Metric from AdS_5 with artificial cut-off at $z=z_{IR}$:

$$ds^2 = \frac{L^2}{z^2} \left(dx_\mu dx^\mu - dz^2 \right)$$

$$L_M, R_M, \Phi$$

ZUV

 \mathbb{R}^4

• YM+CS+Scalar action:

$$S = S_g + S_{CS} + S_{\Phi}, \qquad \mathbf{Z}_{\mathbf{R}}$$

$$S_g = -\frac{M_5}{2} \int d^4x dz \ a(z) \left[\operatorname{Tr} \left(L_{MN} L^{MN} \right) + \frac{1}{2} \widehat{L}_{MN} \widehat{L}^{MN} + \{R \leftrightarrow L\} \right],$$

$$S_{CS} = \frac{N_c}{16\pi^2} \int d^4x dz \ \frac{1}{4} \epsilon_{MNOPQ} \widehat{L}_M \left\{ \operatorname{Tr} \left[L_{NO} L_{PQ} \right] + \frac{1}{6} \widehat{L}_{NO} \widehat{L}_{PQ} - \{R \leftrightarrow L\} \right\},$$

$$S_{\Phi} = M_5 \int d^4x dz \ a^3(z) \left\{ \operatorname{Tr} \left[(D_M \Phi)^{\dagger} D^M \Phi \right] - a^2(z) M_{\Phi}^2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right\},$$

INFRARED POTENTIAL

• In hard-wall models the chiral condensate is encoded in the scalar:

$$\langle \Phi \rangle = M_q \frac{z}{z_{IR}} + (\xi - M_q) \left(\frac{z}{z_{IR}}\right)^2$$

- It is a free parameter of the theory: should originate from a boundary condition on the scalar.
- Infrared potential to stabilize its value:

$$\mathcal{S}_{IR} = \frac{m_b^2}{2}\xi^2 - \lambda\xi^4$$

• We are trading a free parameter for two, but we gain a dynamical ξ

HOMOGENEOUS ANSATZ

• Assume homogeneity in (x_1, x_2, x_3) :

Let
$$M_1, \mathbf{x}_2, \mathbf{x}_3$$
.
 $L_z = R_z = 0,$
 $L_i = -R_i = -H(z)\frac{\tau^i}{2}$; $\widehat{L}_0 = \widehat{R}_0 = \widehat{a}_0(z)$
 $\Phi = \omega_0(z)\frac{1}{2}.$

- Good approximation for the core (high density)
- PDEs \Longrightarrow ODEs
- Density encoded in IR boundary condition:
- Chiral condensate encoded in IR boundary condition:
- Chemical potential encoded in UV boundary condition:

 $H(z_{IR} = 1) = (4\pi^2 d)^{\frac{1}{3}}$ $\omega_0(z_{IR} = 1) = \xi$ $\widehat{a}_0(0) = \mu$

FINITE TEMPERATURE

• Black-hole in AdS dual to thermal theory: $T = \frac{1}{1-1}$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(f(z)dt^{2} - dx_{i}^{2} - \frac{dz^{2}}{f(z)} \right), \qquad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{2}$$

 πz_h

• When $z_h < z_{IR}$:

- 1. Hard-wall disappears behind the horizon, deconfinement
- Hawking-Page transition: happens at $T_d = rac{2^{1/4}}{\pi^2}$:
- 1. Temperature dependence only for deconfined phase
- 2. Deconfinement and chiral symmetry restoration coincide

TRIVIAL PHASE DIAGRAM

DOUBLE HARD-WALL

- We introduce a second cut-off z_0 : • If $z_0 > 2^{1/4} z_{IR}$, HP transition can happen for $T_d < T_c$
- Lowers T_d: effectively it is the same as treating T_d as a free parameter
- Artificial construction? Present in top-down models (D4-D8)
- No effects on neutron stars (T=0)
- Richer phase diagram

ZUV	<u> </u>
<i>L_M</i> , <i>R_M</i> , Φ	L_M, R_M, Φ
ZIR	Z _{IR} Z _h
- <i>Z_C</i>	-Z _c
<i>z</i> 0 z	Z ₀

SPEED OF SOUND

- Depends only on M5, NOT on other free parameters.
- Not monotonic, has a peak above the sound barrier.
- Reaches $c^2=0.659$ The highest we encountered

among holographic models.

• Asymptotically falls down to the conformal value: $c_s^2 = 1/3$

BUT perturbative QCD should take over and eventually the curve should approach 1/3 from below.

FIT CHOICES

WE EMPLOYED TWO DIFFERENT SETS OF PARAMETERS:

- FIT A: $L^{-1} = 186 \text{MeV}$; $\lambda = 2 \times 10^{-3}$; $\xi_0 = 1.05$, FIT B: $L^{-1} = 150 \text{MeV}$; $\lambda \xi_0^4 = 1.024$,

- «FIT A» fits the baryonic onset and the baryon mass (computed with the AdS₅ soliton), leaving freedom to choose the best equation of state among the allowed ones. IMPOSSIBLE to find satisfying EoS.
- «FIT B» is purely chosen to reproduce the best compromise between the measured properties of neutron stars.

 \Rightarrow «Good» neutron stars can be found.

PHASE DIAGRAM(S)

- FIT A
- FIT B
- Free quarks when $z_h < z_{IR}$
- Quarkyonic* is a phase with both baryons AND free quarks.
- Quarkyonic has NO free quarks (baryon popcorn).

PHYSICAL

ADIMENSIONAL

RESULTS FOR NEUTRON STARS

- «FIT A» well outside radius measurements, within Λ , unrealistically massive stars.
- «FIT B» just slightly small radius and Λ compared to measurements, lower masses but still very heavy.
- We expect (supported by educated guesses) that refinement in the assumptions will move every curve into the experimentally admitted regions, and lower the highest mass for a stable star.

NEUTRON STARS MERGER SIMULATION (1.4 SOLAR MASSES, FIT B)

FUTURE DIRECTIONS

 Priority for the future of our model: refine the assumptions on the structure of neutron stars

Step one is to give the stars a suitable crust.

- The crust has low density and it is very unlikely to change the highest masses in the MR curves, BUT it:
- 1. Sensibly increases the radii
- 2. Qualitatively change the low mass behaviour of the MR curve

These two effects can be combined with the freedom to choose a fit for the free paramenters: larger radii would allow for lower masses just by changing calibration of the model.

WHAT WE EXPECT

Small improvement in EoS (crust)

- Find at least one set of parameters that satisfies every observational bound.
- Perform simulations of neutron stars mergers with realistic masses that result in the formation of a black hole.
- Inspect the differences in MR curves and gravitational wave signals, between fully holographic EoS, and hybrid ones.
- ... (we are open to suggestions)

THANK YOU FOR YOUR ATTENTION!