Novel Approaches in Hadron Spectroscopy

MISHA MIKHASENKO ON BEHALF OF JPAC

ORIGINS Excellence Cluster, Germany

August 1st, 2022 Quark Confinement 2022

Joint Physics Analysis Center

Joint effort of theorists and experimentalists to foster studies of strong interaction

Collaboration with several experimental groups

Involved in ongoing projects with LHCb, COMPASS, GlueX, BESIII, and EIC.

Mikhail Mikhasenko (CERN)

Analysis tools

Tools in hadron spectroscopy

General principles of the scattering theory

- Lorentz invariance = independence of the reference frame, known behavior under boosts and rotations
- Unitarity = constraint to imaginary part of scattering amplitude
- Analyticity = implementation of relevant, closest singularities
- Crossing = decay and scattering regions are analytically connected

$$egin{aligned} A(s,t) &= \sum_l A_l(s) P_l(z_s) \ \mathbf{Analyticity} \ A_l(s) &= \lim_{\epsilon o 0} A_l(s+i\epsilon) \end{aligned}$$

Selected results for the talk

Reaction theory and lineshape

• Resonances in J/ψ radiative decays

2 Three-body problem

- Dalitz-plot decomposition
- Three-body unitarity

③ Production mechanism

• Double-Regge production

The report is based on the recent review [JPAC, PPNP (2022) 103981, arXiv:2112.13436]

Most recent studies of on hadronic states

- Deep Learning Exotic Hadrons
- Scalar and tensor resonances in J/ψ radiative decays (*)

[PRD 105 (2022) L091501] [EPJC 82 (2022) 1, 80]

$J/\psi \rightarrow \gamma \pi^0 \pi^0$ and $\rightarrow \gamma K^0_S K^0_S$

[JPAC, EPJC 82 (2022) 1, 80]

- A gluon-rich process, expected to be the golden channel for the search of the scalar glueball
- BESIII data [PRD98 (7) (2018) 072003; PRD92 (5) (2015) 052003]
- \bullet Three-channel ($\pi\pi/{\it KK}/\rho\rho)$ K-matrix with the CDD poles

$J/\psi \rightarrow \gamma \pi^0 \pi^0$ and $\rightarrow \gamma K^0_S K^0_S$

[JPAC, EPJC 82 (2022) 1, 80]

- A gluon-rich process, expected to be the golden channel for the search of the scalar glueball
- BESIII data [PRD98 (7) (2018) 072003; PRD92 (5) (2015) 052003]
- $\bullet\,$ Three-channel ($\pi\pi/{\it KK}/\rho\rho)$ K-matrix with the CDD poles

Parameters of the resonances

- Here, 14 best fits with bootstrap analysis
- 4 scalar resonances, 3 tensor resonance reliably established
- More states might be present, but require more data / channels
- Large model uncertainty related to additional/spurious poles

Large production coupling of $f_0(1710)$ suggests it to have sizable glueball components

Recent progress on three-body interaction

(*) will be shown today

- BESIII puzzle on the $\omega \to 3\pi$ KT and $\omega \to \gamma\pi$
- \bullet Quantization for $3 \rightarrow 3$ scattering on lattice
- Application of Dalitz-plot decomposition (*)

•
$$\Xi_b^- \rightarrow p K^- K^-$$

$$\blacktriangleright B_s \rightarrow J/\psi p\bar{p}$$

- $\blacktriangleright ~B^- \to J/\psi \Lambda \bar{p}$
- Application of three-body unitarity to resonance physics
 - Study of the π_2 resonances for COMPASS (*)

$$\land \Lambda_b^{**0} \to \Lambda_b^0 \pi^+ \pi^-$$

• Study of $T^+_{cc} \rightarrow D^0 D^0 \pi^+$

[JPAC, EPJC 80 (2020) 12, 1107]

[JPAC, PRD 100 (2019) 3, 034508]

[JPAC, PRD 101 (2020) 3, 034033] [LHCb, PRD 104 (2021) 5, 052010] [LHCb, PRL 128 (2022) 6, 062001] [LHCb, (in preparation)]

```
S [JPAC, JHEP 08 (2019) 080]
[JPAC, PPNP (2022) 103981]
[LHCb, JHEP 06 (2020) 136]
[LHCb, Nature Commun. 13 (2022) 1, 3351]
```

Conventional helicity approach

Complicated cases: particles with spin in isobar model [Hansen (1974)], [Herndon(1975)]

The Dalitz-Plot decomposition

[JPAC, PRD 101, 034033 (2020)]

Reformulation of the helicity approach

Model-independent factorization of the overall rotation:

- Exploits properties of the Lorentz group (orientation just three Euler angles)
- Dalitz-plot function depends entirely on 2 variables, m_{23}^2 , and m_{12}^2 .
- (!!!) No azimuthal angles in dynamic function.
- Generalizes for *n*-body decay: 3 rotation \oplus 3*n* 7 dynamic variables
- Fixes problem of 4π symmetry of half-integer spin decays

Decay amplitude in the aligned configuration [JPAC, PRD 101 (2020) 3, 034033]] is a function of Mandelstam variables

Master formula $0 \rightarrow 123$ decay with arbitrary spins

$$\mathcal{O}^{
u}_{\{\lambda\}}(m_{12}^2,m_{23}^2) = \sum_{k=1}^3 \sum_{s}^{(ij) o i,j} \sum_{ au} \sum_{\{\lambda'\}} \delta_{\lambda'_0, au-\lambda'_k} \mathcal{H}^s_{ au,\lambda'_k} \mathsf{BW}(\sigma) \mathcal{H}^s_{\lambda'_i,\lambda'_j} d^s_{ au,\lambda'_i-\lambda'_j}(heta_{ij})
onumber \ imes d^{j_0}_{\lambda_0,\lambda'_0}(\zeta^0_{m k(\cdot)}) d^{j_1}_{\lambda'_1,\lambda_1}(\zeta^1_{m k(\cdot)}) d^{j_2}_{\lambda'_2,\lambda_2}(\zeta^2_{m k(\cdot)}) d^{j_3}_{\lambda'_3,\lambda_3}(\zeta^3_{m k(\cdot)}),$$

- $H^{s}_{\tau,\lambda'_{\iota}}$ and $H^{s}_{\lambda'_{\iota},\lambda'_{\iota}}$ are helicity couplings
- The angles are standard functions of (m_{12}^2, m_{23}^2) :

 - $\theta_{ij}(m_{12}^2, m_{23}^2)$ is an isobar decay angle $\zeta_{k(\cdot)}^i(m_{12}^2, m_{23}^2)$ is the particle-*i* Wigner angle

- widely used in LHCb
- implemented in frameworks

Amplitude for resonance process [JPAC, JHEP 08 (2019) 080] Two-body resonance

$$\hat{\mathcal{T}}_2(s)=rac{g^2}{m^2-s-ig^2\Phi_2(s)}
ightarrowrac{1}{(m^2-s)/g^2-\Sigma_2(s)}$$

• Self-energy: $ig^2\Phi_2(s) \rightarrow \Sigma_2(s)$, Chew-Mandelstam to ensure analyticity.

Amplitude for resonance process [JPAC, JHEP 08 (2019) 080] Two-body resonance

$$\hat{\mathcal{T}}_2(s)=rac{g^2}{m^2-s-ig^2\Phi_2(s)}
ightarrowrac{1}{(m^2-s)/g^2-\Sigma_2(s)}$$

• Self-energy: $ig^2\Phi_2(s) \rightarrow \Sigma_2(s)$, Chew-Mandelstam to ensure analyticity.

$$\hat{\mathcal{T}}_{R}(s) = rac{1}{(m^2-s)/g^2 - \Sigma(s)} = rac{1}{\mathcal{K}_1^{-1}(s) - \Sigma(s)}$$

• Dispersion relation for the self-energy:

$$\Sigma(s) = \frac{s}{2\pi} \int_{s_{\text{th}}}^{\infty} \frac{\mathrm{d}s'}{s'(s'-s)} \int_{\text{Dalitz}(s')} \left| \hat{\mathcal{A}}_{R \to 1,2,3}(s',\sigma_1',\sigma_2') \right|^2 \mathrm{d}\Phi_3'$$

• The
$$\left| \hat{\mathcal{A}}_{R \to 1,2,3}(s,\sigma_1,\sigma_2) \right|^2$$
 is observable (+FSI)

Mikhail Mikhasenko (CERN)

August 1st, 2022

Amplitude for resonance process [JPAC, JHEP 08 (2019) 080] Two-body resonance

$$\hat{\mathcal{T}}_2(s) = rac{g^2}{m^2 - s - ig^2 \Phi_2(s)} o rac{1}{(m^2 - s)/g^2 - \Sigma_2(s)}$$

• Self-energy: $ig^2\Phi_2(s) \rightarrow \Sigma_2(s)$, Chew-Mandelstam to ensure analyticity.

 $\hat{\mathcal{T}}_{R}(s) = rac{1}{(m^2 - s)/g^2 - \Sigma(s)} = rac{1}{\mathcal{K}_{1}^{-1}(s) - \Sigma(s)}$

• Dispersion relation for the self-energy:

2

$$\Sigma(s) = \frac{s}{2\pi} \int_{s_{\text{th}}}^{\infty} \frac{\mathrm{d}s'}{s'(s'-s)} \int_{\text{Dalitz}(s')} \left| \hat{\mathcal{A}}_{R \to 1,2,3}(s',\sigma_1',\sigma_2') \right|^2 \mathrm{d}\Phi_2'$$

• The
$$\left| \hat{\mathcal{A}}_{R \to 1,2,3}(s,\sigma_1,\sigma_2) \right|^2$$
 is observable (+FSI)

August 1st, 2022

The π_2 resonances with COMPASS data [JPAC, PPNP (2022) 103981; MM, PhD thesis]

- COMPASS experiment at CERN
 - Diffractive production of 3π system
 - pion beam scattered off proton target,
- PWA to separate J^P for every $m_{3\pi}$ bin
- 11 data sets with different $t = p_{\mathbb{P}}^2$.

The π_2 resonances with COMPASS data

COMPASS experiment at CERN

Diffractive production of 3π system
pion beam scattered off proton target.

• PWA to separate J^P for every $m_{3\pi}$ bin

• 11 data sets with different $t = p_{\mathbb{D}}^2$.

[JPAC, PPNP (2022) 103981; MM, PhD thesis]

Resonance analysis of $J^P = 2^+$:

- coupled-channel *K*-matrix
- large model uncertainty

	m_n (MeV)	Γ_n (MeV)
$\pi_2(1670)$	1650 - 1750	280-380
$\pi_2(1880)$	1770 - 1870	200 - 450
$\pi_2(2005)$	1890 - 2190	590 - 1340

13/23

Recent studies of the hadron production mechanism

- Nucleon resonances in inclusive electron scattering
- XYZ production in electron-proton collisions
- Two-meson production in the double-Regge region (*)
- Finite energy sum rules

[JPAC, PRC104 (2021) 025201]

[JPAC, PRD102 (2020) 114010]

[JPAC, EPJC 81 (2021) 647]

[JPAC, (in progress)]

Features of $\eta\pi$ vs $\eta'\pi$ production at high energy [(COMPASS) PLB 740 (2015) 303]

Features of $\eta\pi$ vs $\eta'\pi$ production at high energy [(COMPASS) PLB 740 (2015) 303]

Features of $\eta\pi$ vs $\eta'\pi$ production at high energy [(COMPASS) PLB 740 (2015) 303]

15 / 23

High-energy

Double-Regge model inspired by [Shimada et al. (1978)]

[JPAC, Eur.Phys.J.C 81 (2021) 647]

$$T_{\alpha_1/\alpha_2}(\mathbf{s_1}, \mathbf{s_2}) = \mathbf{K} \Gamma(1 - \alpha_1) \Gamma(1 - \alpha_2) (\alpha' \mathbf{s})^{-1} (\alpha' \mathbf{s_1})^{\alpha_1} (\alpha' \mathbf{s_2})^{\alpha_2} \\ \times [\eta^{\alpha_1} \xi_1 \xi_{21} V(\alpha_1, \alpha_2, \eta) + \eta^{\alpha_2} \xi_2 \xi_{12} V(\alpha_2, \alpha_1, \eta)$$

- K kinematic function $\sim \sin \theta_{\rm GJ} \sin \phi_{\rm TY}$.
- $s_i^{\alpha_i(t_i)}$ for both reggeons
- ξ_i and ξ_{ij} are the signature factors
- $\eta = s/(\alpha' s_1 s_2)$ is finite in the Double Regge limit
- V(α₁, α₂, η) is the reggeon-reggeon vertex.
 Minimal model: all residuals in the vertex function are the same.

$$A = \underbrace{c_1 T_{a_2/\mathbb{P}(f_2)}}_{\eta \text{ forward}} + \underbrace{c_2 T_{f_2/\mathbb{P}(f_2)}}_{\pi \text{ forward}} + \underbrace{c_3 T_{\mathbb{P}/\mathbb{P}(f_2)}}_{\pi \text{ forward}}.$$

Effect of PW-set trunction

- Data is analyzed in **truncated** PW set: $L \leq 6$, $M \leq 2$
- \bullet Extended likelihood fit \Rightarrow force intensity redistribution
- "Squeezing" the full series to the truncated set

Bottom exchange: f_2 vs \mathbb{P}

Representative: forward, backward intensity

$$egin{aligned} \mathcal{F}^{(m_{\eta\pi})} &= \int_{\cos heta > 0} I(\Omega) \, \mathrm{d}\Omega, \ \mathcal{B}^{(m_{\eta\pi})} &= \int_{\cos heta < 0} I(\Omega) \, \mathrm{d}\Omega. \end{aligned}$$

Can be computed for the model, and from the "data" partial waves.

- The slope ${\rm d}I/{\rm d}m_{\eta\pi}$ is sensitive to the bottom exchange
- The slope is different in the forward and the backward regions

1.5

 $10^{1.5}$

1.0

2.0

m(nπ)

2.5

3.0

Integral intensities

August 1st, 2022

Conclusions on contributing processes

FB Asymmetry $\frac{(\cos\theta > 0) - (\cos\theta > 0)}{(\cos\theta > 0) + (\cos\theta > 0)}$

- $a_2 f_2$ coupling degeneracy lead to nearly no asymmetry for $\eta\pi$
- Three effects of large asymmetry in $\eta' \pi$:
 - no $a_2 f_2$ symmetry significant \mathbb{P}/\mathbb{P} process mass difference

$a_2/\mathbb{P})$	0.35 ± 0.05
(f_2/\mathbb{P})	not needed
$a_2/f_2)$	<mark>0.6</mark> ± 0.5
(f_2/f_2)	$\textbf{7.6} \pm 0.7$
(\mathbb{P}/\mathbb{P})	$\textbf{(18\pm2)}\times10^{-3}$

Summary

- JPAC started in 2013 as project between Indiana university and JLab
- Much expanded and matured since then
- The driving force is enthusiasm and curiosity
- The main focus is on development the tools to tackle challenges in hadron spectroscopy
- Also, we organize lecture courses and various school
- Close cooperation with experimental groups is essential

Everyone sharing the interest in hadron physics is WELCOME TO JOIN !!

Activities on JPAC

- Over 120 research articles
- Over 200 invited talks
- Summer schools (2015, 2017)
- Many workshop, conferences, programs
- Scattering courses (2021, 2022)
- Affiliated membership in many experiments
- Recent PhDs: D.Winney (2021), N.Sherrill (2021), A.Jackura (2019), A.Rodas (2019), M.Mikhasenko (2019), J.Nys (2018), A.Hiller-Blin (2018)
- Recent faculty position: C.Fernandez, M.Albaladejo, V.Mathieu, A.Pilloni

Thank you for the attention!