

Dielectron measurements with the HADES at GSI

Quark Confinement and the Hadron Spectrum, 01.08.-06.08.2022

Jan-Hendrik Otto for the HADES collaboration, JLU Gießen 05/08/2022

HADES Physics Program

Nature Physics volume 15, pages 1040-1045 (2019)

- Explore high- μ_B region of the QCD phase diagram
- Focus on rare and penetrating probes

 → Virtual and real photons, that probe all different stages of heavy
 ion collisions: Initial NN collisions → Fireball → Decay of hadronic
 resonances
- · Address various aspects of baryon-meson coupling

 \rightarrow Heavy ion collisions at $\sqrt{s_{NN}} = 2 - 3 \text{ GeV}$

- HADES collision dynamics strongly differs from high energy collisions
- \rightarrow Pion and nucleon beams e.g. for reference

05/08/2022

The High Acceptance DiElectron Spectrometer

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- Low mass Mini-Drift-Chambers (MDCs)
- · Time of flight walls RPC and ToF
- Upgraded RICH detector and new ECal for electron and photon detection
- Almost full azimuth angle coverage and polar angles between $18^\circ\,-\,85^\circ$
- 15-fold (25 μ m, $\Delta z = 3.7$ mm) segmented target
- Accepted trigger rate 16 kHz for HIC, 50 kHz for elementary reactions

05/08/2022

Dielectron measurements with the HADES

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{\it NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}}$ = 2.42 GeV (Nat. Phys. V15, p 1040–1045 (2019))
- $\rightarrow \pi^- + CH_2$ at $\sqrt{s_{\pi^- p}} = 1.49 \text{ GeV}$ (arXiv:2205.15914v2 (Jun 2022))
- ightarrow p + p at $\sqrt{s_{\scriptscriptstyle NN}}$ = 3.46 GeV

05/08/2022

Detector performance - electron identification

- HADES (RICH) combines high efficient electron identification with high pion and conversion suppression
- Electron efficiency derived embedding single e^{\pm} in real data
- $\cdot \quad \rho \to \pi\pi \ (\sim 100\%) \text{ vs.} \\ \rho \to ee \ (\sim 4.72 \cdot 10^{-5})$
- Electron purity of P > 99% at low momenta; P \sim 90% at high momenta

05/08/2022

Pair invariant mass distribution

• Efficiency correction based on single electron simulation embedded into real data (in p, θ, ϕ)

$$\cdot < BG_{+-} >= 2k\sqrt{< FG_{++} >< FG_{--} >}$$

- BG from mixed-event technique for $M_{ee} > 400 \, MeV/c^2$
- $S/B(M_{ee} = M_{\omega}) \approx 3$
- S/B > 1 for $M_{ee} > 500 MeV/c^2$

05/08/2022

Upgrade of the HADES RICH (in cooperation with CBM)

- Allows for high efficient electron identification in clean environment
- Recognition of conversion pairs even with opening angle $\alpha = 0^{\circ}$

05/08/2022

Quark Confinement and the Hadron Spectrum 2022

100 120

x [mm]

x [mm]

- Hadron multiplicities extracted from the same data
 - Multiplicities of pseudoscalars extracted from 4-electron analysis $(\pi^0/\eta \rightarrow \gamma \gamma^{(\star)} \rightarrow 4e)$
 - $\omega \rightarrow e^+e^-$ signal allows for multiplicity estimation
 - + ϕ from K^+K^- and e^+e^-
- Clear excess above final freeze-out hadrons over the full invariant mass region (Fireball + initial NN collisions)

AuAu, ArKCl data published in Nature Physics volume 15, pages 1040–1045 (2019)

- *R*_{AA}: Dielectron yield in AA collisions normalized to elementary reactions
- At small M_{ee} the π^0 Dalitz yield dominates \rightarrow slight excess only
- Excess of $< R_{AA}^{AgAg} >=$ 3.05 observed beyond the π^0 region
- Systematic uncertainties dominated by meson multiplicities (η, yellow band)
- The excess ratio aligns in between of ArKCl and AuAu HADES data

05/08/2022

Towards in-medium contribution

- Use model calculations to compensate for currently missing NN reference to reveal in-medium contribution
- pp and pn simulated using GiBUU 2021 release (Phys. Rept. 512 (2012) 1-124) modeling NN = 0.54 pp + 0.46 pn (analogue to Physical Review C, 6, 102.064913)
- Usage of initial NN channels from GiBUU (bremsstrahlung, Δ-resonance)

05/08/2022

Temperature of the medium

- Subtraction of hadronic cocktail and simulated initial NN contributions reveals excess radiation (Fireball radiation)
- Acceptance corrected medium radiation reveals mean temperature of the fireball; performed based on PLUTO simulation
- + Uncertainties in η multiplicity dominant
- Minor temperature dependence on centrality

05/08/2022

p_t dependent dielectron spectra

- Perform analysis in bins of transverse pair momentum
- Broad excess over continuum in low momentum data develops into peak structure in high momentum data at $M_{ee} \sim 770 \, MeV/c$
- High p_t data shows also an enhancement above the continuum at around $M_{ee} \sim 550 \, MeV/c^2$
 - Currently under investigation

05/08/2022

Dielectron measurements with the HADES

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}} = 2.42 \text{ GeV}$ (Nat. Phys. V15, p 1040–1045 (2019))
- $\rightarrow \pi^- + CH_2$ at $\sqrt{s_{\pi^- p}} =$ 1.49 GeV (arXiv:2205.15914v2 (Jun 2022))
- ightarrow p + p at $\sqrt{s_{\scriptscriptstyle NN}}$ = 3.46 GeV

05/08/2022

HADES Au+Au measurement

- Analysis performed similarly to presented Ag + Ag data, but data was taken before the RICH upgrade (*S*/*B* ~ 0.1 0.2 instead of *S*/*B* ~ 1)
- NN reference measured at the same energy by HADES

 \rightarrow extraction of the in-medium contribution straight forward

13/21

05/08/2022

HADES Au+Au measurement

- Subtraction of NN reference, η (sub-threshold production in A+A) and ω reveals in-medium contribution
- Structureless, near exponential falling spectrum indicates a strong medium modification of the ρ meson required in theory to describe the data

05/08/2022

Dielectron measurements with the HADES

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}}$ = 2.42 GeV (Nat. Phys. V15, p 1040–1045 (2019))
- $\rightarrow \pi^- + CH_2$ at $\sqrt{s_{\pi^- p}} = 1.49 \text{ GeV}$ (arXiv:2205.15914v2 (Jun 2022))
- ightarrow p + p at $\sqrt{s_{\scriptscriptstyle NN}}$ = 3.46 GeV

05/08/2022

Dielectron measurement in pion induced reactions

- In-medium modification of the ρ potentially caused by strong coupling to baryonic resonance states
- To further test this approach, an experiment of the type $\pi + N \rightarrow Ne^+e^-$, where such resonances are directly formed is ideal
- HADES has initiated a dedicated pion beam program allowing for a resolution of 0.1% to 0.3% in pion momentum

Nucl.Phys.News 25 (2015) 2, 22-24

05/08/2022

Dielectron measurement in pion induced reactions

- Measurement of dielectron production in $\pi^- + CH_2$ and $\pi^- + C$ allows extraction of $\pi^- + p$ data
- Missing mass requirement of m(n) triggers selection of $\pi^- + p \rightarrow ne^+e^-$ events
- Cross section measured of $\sigma = (2.97 \pm 0.38) \mu b$
- First time measurement at this energy provides necessary input to theory

05/08/2022

Dielectron measurements with the HADES

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}}$ = 2.42 GeV (Nat. Phys. V15, p 1040–1045 (2019))
- $\rightarrow \pi^- + CH_2$ at $\sqrt{s_{\pi^- p}} = 1.49$ GeV (arXiv:2205.15914v2 (Jun 2022))
- $\rightarrow p + p$ at $\sqrt{s_{NN}} = 3.46 \, GeV$

05/08/2022

- HADES FAIR phase 0
- "Online" spectrum, analysis is ongoing
- Study electromagnetic decays of hyperons
- Dielectron data as reference for p + A and A + A future CBM measurements
- Additionally: Study hadronic decays of hyperons (also double and hidden strangeness)

- The upgraded HADES spectrometer allows for high efficient electron identification paired with high pion suppression and conversion recognition \rightarrow High quality of dielectron spectra
- Hadronic cocktail simulations reveal a clear excess of virtual photons over the full invariant mass region, quantified by the dielectron excess ratio R_{AA}
- Thermal-like excess spectrum: $T\sim 78~{
 m MeV}/k$
- + Pair momentum dependent differences in the line-shape in the $ho-\omega$ mass region
- The versatile HADES allows to study pion induced reactions for further investigation of the $\rho - N$ coupling \rightarrow First time measurement of $\pi^- + p \rightarrow ne^+e^-$ cross section at the corresponding energy
- Recently taken p + p data currently analyzed

