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Introduction

The three-dimensional Schrödinger equation has analytical solutions
for only a very small class of systems.

Most phenomenological descriptions of QCD bound states are
described by the 3D Schrödinger equation with a wide variety of
potentials.

Examples: below-threshold charmonium production and bottomonium
spectra; potential-based non-relativistic QCD (pNRQCD);
quarkonium evolution in the quark-gluon plasma,...

Goal: finding numerical solutions of the Three-Dimensional
Schrödinger Equation with arbitrary potentials.

Means: we extend the parallelized solver called quantumfdtd from
M. Strickland et al. [J.Compt.Phys.229, 6015; PRD83, 105019].

Code available under a GPLv3 license on
https://github.com/quantumfdtd/quantumfdtd_v3
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The solver

We implement full 3D kinetic terms, hence there is no restriction
over the symmetry of the (arbitrary) external potential.

quantumfdtd is coded in C++ and uses the MPI, FFTW MPI v.3,
GNU Scientific Library (GSL), and CBLAS libraries.

For the post-processing scripts, Python 3 (with Pandas library),
gnuplot and Bash are employed.

Input: the program accepts a configuration file (usually, on
input/params.txt and (optional) command line arguments.

New feature: the program can accept arbitrary external potentials as
ASCII files, or you can use the hard-coded potentials. You could easily
extend these hardcoded potentials to include your own ones as well.

Output: ASCII files (usually on data/ and data/snapshot).

Post-processing scripts: Python scripts that allow spherical harmonics
projections, symmetrization,...
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New features in quantumfdtd: relativistic Schrödinger
equation

The Schrödinger Hamiltonian is split into a kinetic term, HK , and a
potential V (r⃗),

H = HK + V (r⃗)

The usual non-relativistic term is Hnr
K =

∑
i=1,2,3

p2i
2m , where

p⃗ = (p1, p2, p3) is the spatial three momentum.

This non-relativistic term was coded in old quantumfdtd.

New in quantumfdtd v3: relativistic kinetic term,

H rel
K =

√
m2 +

∑
i=1,2,3

p2i
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Evaluation of the kinetic term: FDTD

Old quantumfdtd uses finite-diference time-domain (FDTD) method
with Dirichlet boundary conditions, Ψ(boundary) ≡ 0:

H
(0)
K Ψ = − 1

2M

±3∑
l=±1

1

2A

Ψ(r⃗ + êl)−Ψ(r⃗)

A
,

r⃗ ≡ (Ax1,Ax2,Ax3), x1, x2, x3 ∈ {0, 1, . . . ,N − 1}

On momentum space, the equivalent Hamiltonian is:

H
(0)
K Ψ(p⃗) =

1

2M

3∑
l=1

4

A2
sin2

(
Apl
2

)
Ψ(p⃗), kl ≡ Apl
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Ψ(r⃗ + êl)−Ψ(r⃗)

A
,

r⃗ ≡ (Ax1,Ax2,Ax3), x1, x2, x3 ∈ {0, 1, . . . ,N − 1}

On momentum space, the equivalent Hamiltonian is:

H
(0)
K Ψ(p⃗) =

1

2M

3∑
l=1

4

A2
sin2

(
Apl
2

)
Ψ(p⃗), kl ≡ Apl

Rafael L. Delgado quantumfdtd, a computational framework... 5 / 15



Fast Fourier Transform

Three new kinetic terms (H
(1,2,3)
K ): we use the Fast Fourier Transform

(FFT) to go from position to momentum space; evaluate HK ; and use
the Inverse FFT (IFFT) to go back to position space.

FFT =⇒ periodic boundary conditions.

H
(1)
K and H

(2)
K : non-relativistic kinetic terms; H

(1)
K uses naive

FFT-based differentiation; H
(2)
K uses the correct momentum space

(via Symanzik effective field theory) on a finite and periodic lattice.

H
(1)
K Ψ =

1

2A2MN3
· IFFT

[
3∑

l=1

(kl)
2 · FFT[Ψ]

]

H
(2)
K Ψ =

1

2A2MN3
· IFFT

[
4

3∑
l=1

sin2
(
kl
2

)
· FFT[Ψ]

]
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The iterative procedure

In order to extract the ground, second and third excited states
wavefunctions (Ψ0,1,2) and energies (E0,1,2), we use the same iterative
procedure that was coded on legacy quantumfdtd, based on a Wick
rotation of the Schrödinger Equation (it → τ)

Ψ(x1, x2, x3, τ +∆τ) = AΨ(x1, x2, x3, τ)− B∆τHKΨ(x1, x2, x3, τ)

A =
1− ∆τ

2 V (r⃗)

1 + ∆τ
2 V (r⃗)

, B =
1

1 + ∆τ
2 V (r⃗)

The evolution with τ is given by

Ψ(x1, x2, x3, τ) =
∞∑
i=0

anΨi (x1, x2, x3)e
−Eiτ ,

where {a0, a1, . . . } are the decomposition coefficients of the initial
guess Ψ(x1, x2, x3, 0) in the basis of eigenvectors.

An overlap procedure is used for the numerical extraction of the first
and second excited states.
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Parity projections

In order to extract the excited states, we include a Python script that
allows for computing the positive P+, negative P− and
negative-around-an-axis P−

pk
parity projections of a wave-function,

P±Ψ(r⃗) =
1

2
[Ψ(r⃗)±Ψ(−r⃗)]

P−
p⃗k=ê3

Ψ(x1, x2, x3) =
1

2
[Ψ(x1, x2, x3) + Ψ(−x1,−x2, x3)

−Ψ(x1, x2,−x3)−Ψ(−x1,−x2 − x3)]

We also include a script for enforcing the normalization of
wave-functions within the lattice volume V ,

∫
v dV |Ψ|2 = 1.

These scripts are included on top of an option in quantumfdtd that
allows for enforcing symmetry restrictions within the iterative
procedure itself.
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Initial conditions and studied cases

We use a Coulomb potential for the following analysis.

Initial guess: Coulomb-like initial conditions centered on the lattice
volume. Actually, this is an initial guess with a linear combination of
the states 1s, 2s, 2p (m = 0), and the real part of the 2p (m = ±1).

Lattice spacing A = 0.12 fm

Unless otherwise stated,
N = 64 centered on the lattice
volume.

Unless otherwise stated,
M = 0.3GeV.

(A ·M)2 ≈ 0.03 ⇒ mild finite
mass discretization errors
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the states 1s, 2s, 2p (m = 0), and the real part of the 2p (m = ±1).

Lattice spacing A = 0.12 fm

Unless otherwise stated,
N = 64 centered on the lattice
volume.

Unless otherwise stated,
M = 0.3GeV.

(A ·M)2 ≈ 0.03 ⇒ mild finite
mass discretization errors
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Comparison: different non-relativistic kinetic terms

H
(0)
K (solid), H

(1)
K (dashed) and H

(2)
K (dotted). Left: N = 64; right: N = 128.

Very small differences between H
(1)
K and H

(2)
K , even with N = 64.

The differences between H
(0)
K (FDTD) and H

(2)
K (FFT) kinetic terms that

were evident with N = 64 are almost negligible with N = 128.

N = 64: finite volume effects (boundary conditions!!) are evident. FDTD
uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

Rafael L. Delgado quantumfdtd, a computational framework... 10 / 15



Comparison: different non-relativistic kinetic terms

H
(0)
K (solid), H

(1)
K (dashed) and H

(2)
K (dotted). Left: N = 64; right: N = 128.

Very small differences between H
(1)
K and H

(2)
K , even with N = 64.

The differences between H
(0)
K (FDTD) and H

(2)
K (FFT) kinetic terms that

were evident with N = 64 are almost negligible with N = 128.

N = 64: finite volume effects (boundary conditions!!) are evident. FDTD
uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

Rafael L. Delgado quantumfdtd, a computational framework... 10 / 15



Comparison: different non-relativistic kinetic terms

H
(0)
K (solid), H

(1)
K (dashed) and H

(2)
K (dotted). Left: N = 64; right: N = 128.

Very small differences between H
(1)
K and H

(2)
K , even with N = 64.

The differences between H
(0)
K (FDTD) and H

(2)
K (FFT) kinetic terms that

were evident with N = 64 are almost negligible with N = 128.

N = 64: finite volume effects (boundary conditions!!) are evident. FDTD
uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

Rafael L. Delgado quantumfdtd, a computational framework... 10 / 15



Comparison: different non-relativistic kinetic terms

H
(0)
K (solid), H

(1)
K (dashed) and H

(2)
K (dotted). Left: N = 64; right: N = 128.

Very small differences between H
(1)
K and H

(2)
K , even with N = 64.

The differences between H
(0)
K (FDTD) and H

(2)
K (FFT) kinetic terms that

were evident with N = 64 are almost negligible with N = 128.

N = 64: finite volume effects (boundary conditions!!) are evident. FDTD
uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

Rafael L. Delgado quantumfdtd, a computational framework... 10 / 15



Wave-functions for the non-relativistic H
(0)
K and H

(2)
K

Up: H
(0)
K (FDTD); down: H

(2)
K (FFT)
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Wave-functions for the non-relativistic H
(0)
K and H

(2)
K

Up: H
(0)
K (FDTD); down: H

(2)
K (FFT)

Non-relativistic kinetic term H
(0)
K (FDTD based, left) and the non-

relativistic kinetic term H
(2)
K (FFT-based, right) using the increased

lattice volume (N = 128).
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Modified Harmonic oscillator: a test for the relativistic H
(3)
K

In order to compare the H
(3)
K kinetic term implementation with the

literature, we are using the Harmonic oscillator, for which an analytical
solution in momentum space exists [Z.F.Li et. al., J.Math.Phys.46, 103514].

We have implemented such an analytical solution on Fortran:
https://github.com/quantumfdtd/relativistic_harmonic_oscillator

Appropriate parameters for comparison with the literature: N = 256,
M = 30GeV, A = 0.006 fm, (A ·M)2 ≈ 0.81 (discretization errors and large
mass!).
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literature, we are using the Harmonic oscillator, for which an analytical
solution in momentum space exists [Z.F.Li et. al., J.Math.Phys.46, 103514].

We have implemented such an analytical solution on Fortran:
https://github.com/quantumfdtd/relativistic_harmonic_oscillator

Appropriate parameters for comparison with the literature: N = 256,
M = 30GeV, A = 0.006 fm, (A ·M)2 ≈ 0.81 (discretization errors and large
mass!).

Momentum space. Solid, quantumfdtd v.3 output turned
into momentum space by means of the FFT; dashed, theo-
retical prediction of Ref. [J.Math.Phys.46, 103514].
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Conclusions: extensions to quantumfdtd

We have extended the previous code quantumfdtd v.2 to
quantumfdtd v.3.

We have implemented 2 additional non-relativistic kinetic terms, that
are based on Fast Fourier Transform.

We have implemented a new FFT-based relativistic kinetic term.

The new code accepts arbitrary potential via external files according
to a format described on [Comput.Phys.Commun.272, 108250]

We allow for dumping full wave-functions as snapshots. This is
specially valuable for extracting excited states.

Small additional changes: cleanup of the code; we do not require an
additional MPI node for controlling,...
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Conclusions: numerical stability

The ground-state wave-function is stable for high values of the time
evolution parameter τ .

The overlap method is an approximation to project out the first and
second excited states from the full wave-function.

For sufficiently high values of τ , the excited states contribution will
fall below the machine precision, eliminating the information about
excited states.

The parity projection scripts are a useful tool for separating excited
states when they are nearly degenerated in energy which is especially
noticeable for the 2s and the 2p-states.
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Conclusions: future work

Implementing a suitable binary format for the wave-functions.

Implementing an automatized algorithm in order to look for saddle
points of E (τ)

Implementing new projection operators (for instance, d-wave states).
This may imply including contributions from higher states in the
initial guess.

Allowing for variations of the coupling strength of each potential.

Implementing an implicit Crank-Nicolson method. It makes the
evolution unconditionally stable regardless of the choice of time step
∆τ . Issue: the relativistic Schrödinger equation is a non-linear partial
differential equation.

(Anti)-symmetric solution for a two-particle systems in a background
potential with an interaction potential between the particles. Of
interest for tetraquark phenomenology.
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