quantumfdtd, a computational framework for the Relativistic Schrödinger Equation

Rafael L. Delgado

UNIVERSIDAD POLITÉCNICA DE MADRID

Based on Comput. Phys. Commun. **272** (2022) 108250 Code on https://github.com/quantumfdtd/quantumfdtd_v3 XVth Quark Confinement and the Hadron Spectrum, Stavanger (Norway)

Introduction

- The three-dimensional Schrödinger equation has analytical solutions for only a very small class of systems.
- Most phenomenological descriptions of QCD bound states are described by the 3D Schrödinger equation with a wide variety of potentials.
- Examples: below-threshold charmonium production and bottomonium spectra; potential-based non-relativistic QCD (pNRQCD); quarkonium evolution in the quark-gluon plasma,...
- Goal: finding numerical solutions of the Three-Dimensional Schrödinger Equation with arbitrary potentials.
- Means: we extend the parallelized solver called quantumfdtd from M. Strickland et al. [J.Compt.Phys.**229**, 6015; PRD**83**, 105019].
- Code available under a GPLv3 license on https://github.com/quantumfdtd/quantumfdtd_v3

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction

- The three-dimensional Schrödinger equation has analytical solutions for only a very small class of systems.
- Most phenomenological descriptions of QCD bound states are described by the 3D Schrödinger equation with a wide variety of potentials.
- Examples: below-threshold charmonium production and bottomonium spectra; potential-based non-relativistic QCD (pNRQCD); quarkonium evolution in the quark-gluon plasma,...
- Goal: finding numerical solutions of the Three-Dimensional Schrödinger Equation with arbitrary potentials.
- Means: we extend the parallelized solver called quantumfdtd from M. Strickland et al. [J.Compt.Phys.**229**, 6015; PRD**83**, 105019].
- Code available under a GPLv3 license on https://github.com/quantumfdtd/quantumfdtd_v3

< □ > < 同 > < 回 > < 回 > < 回 >

- The three-dimensional Schrödinger equation has analytical solutions for only a very small class of systems.
- Most phenomenological descriptions of QCD bound states are described by the 3D Schrödinger equation with a wide variety of potentials.
- Examples: below-threshold charmonium production and bottomonium spectra; potential-based non-relativistic QCD (pNRQCD); quarkonium evolution in the quark-gluon plasma,...
- Goal: finding numerical solutions of the Three-Dimensional Schrödinger Equation with arbitrary potentials.
- Means: we extend the parallelized solver called quantumfdtd from M. Strickland et al. [J.Compt.Phys.**229**, 6015; PRD**83**, 105019].
- Code available under a GPLv3 license on https://github.com/quantumfdtd/quantumfdtd_va

< ロ > < 同 > < 回 > < 回 > < 回 > <

- The three-dimensional Schrödinger equation has analytical solutions for only a very small class of systems.
- Most phenomenological descriptions of QCD bound states are described by the 3D Schrödinger equation with a wide variety of potentials.
- Examples: below-threshold charmonium production and bottomonium spectra; potential-based non-relativistic QCD (pNRQCD); quarkonium evolution in the quark-gluon plasma,...
- Goal: finding numerical solutions of the Three-Dimensional Schrödinger Equation with arbitrary potentials.
- Means: we extend the parallelized solver called quantumfdtd from M. Strickland et al. [J.Compt.Phys.**229**, 6015; PRD**83**, 105019].
- Code available under a GPLv3 license on https://github.com/quantumfdtd/quantumfdtd_v

ヘロト ヘヨト ヘヨト

- The three-dimensional Schrödinger equation has analytical solutions for only a very small class of systems.
- Most phenomenological descriptions of QCD bound states are described by the 3D Schrödinger equation with a wide variety of potentials.
- Examples: below-threshold charmonium production and bottomonium spectra; potential-based non-relativistic QCD (pNRQCD); quarkonium evolution in the quark-gluon plasma,...
- Goal: finding numerical solutions of the Three-Dimensional Schrödinger Equation with arbitrary potentials.
- Means: we extend the parallelized solver called quantumfdtd from M. Strickland et al. [J.Compt.Phys.**229**, 6015; PRD**83**, 105019].

 Code available under a GPLv3 license on https://github.com/quantumfdtd/quantumfdtd_v3

ヘロト ヘヨト ヘヨト

- The three-dimensional Schrödinger equation has analytical solutions for only a very small class of systems.
- Most phenomenological descriptions of QCD bound states are described by the 3D Schrödinger equation with a wide variety of potentials.
- Examples: below-threshold charmonium production and bottomonium spectra; potential-based non-relativistic QCD (pNRQCD); quarkonium evolution in the quark-gluon plasma,...
- Goal: finding numerical solutions of the Three-Dimensional Schrödinger Equation with arbitrary potentials.
- Means: we extend the parallelized solver called quantumfdtd from M. Strickland et al. [J.Compt.Phys.**229**, 6015; PRD**83**, 105019].
- Code available under a GPLv3 license on https://github.com/quantumfdtd/quantumfdtd_v3

・ 同 ト ・ ヨ ト ・ ヨ ト

- We implement full 3D kinetic terms, hence there is **no restriction over the symmetry** of the (arbitrary) external potential.
- quantumfdtd is coded in C++ and uses the MPI, FFTW_MPI v.3, GNU Scientific Library (GSL), and CBLAS libraries.
- For the post-processing scripts, Python 3 (with Pandas library), gnuplot and Bash are employed.
- Input: the program accepts a configuration file (usually, on input/params.txt and (optional) command line arguments.
- New feature: the program can accept arbitrary external potentials as ASCII files, or you can use the hard-coded potentials. You could easily extend these hardcoded potentials to include your own ones as well.
- Output: ASCII files (usually on data/ and data/snapshot).
- Post-processing scripts: Python scripts that allow spherical harmonics projections, symmetrization,...

• • • • • • • • • • • • •

- We implement full 3D kinetic terms, hence there is **no restriction over the symmetry** of the (arbitrary) external potential.
- quantumfdtd is coded in C++ and uses the MPI, FFTW_MPI v.3, GNU Scientific Library (GSL), and CBLAS libraries.
- For the post-processing scripts, Python 3 (with Pandas library), gnuplot and Bash are employed.
- Input: the program accepts a configuration file (usually, on input/params.txt and (optional) command line arguments.
- New feature: the program can accept arbitrary external potentials as ASCII files, or you can use the hard-coded potentials. You could easily extend these hardcoded potentials to include your own ones as well.
- Output: ASCII files (usually on data/ and data/snapshot).
- Post-processing scripts: Python scripts that allow spherical harmonics projections, symmetrization,...

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- We implement full 3D kinetic terms, hence there is **no restriction over the symmetry** of the (arbitrary) external potential.
- quantumfdtd is coded in C++ and uses the MPI, FFTW_MPI v.3, GNU Scientific Library (GSL), and CBLAS libraries.
- For the post-processing scripts, Python 3 (with Pandas library), gnuplot and Bash are employed.
- Input: the program accepts a configuration file (usually, on input/params.txt and (optional) command line arguments.
- New feature: the program can accept arbitrary external potentials as ASCII files, or you can use the hard-coded potentials. You could easily extend these hardcoded potentials to include your own ones as well.
- Output: ASCII files (usually on data/ and data/snapshot).
- Post-processing scripts: Python scripts that allow spherical harmonics projections, symmetrization,...

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- We implement full 3D kinetic terms, hence there is **no restriction over the symmetry** of the (arbitrary) external potential.
- quantumfdtd is coded in C++ and uses the MPI, FFTW_MPI v.3, GNU Scientific Library (GSL), and CBLAS libraries.
- For the post-processing scripts, Python 3 (with Pandas library), gnuplot and Bash are employed.
- Input: the program accepts a configuration file (usually, on input/params.txt and (optional) command line arguments.
- New feature: the program can accept arbitrary external potentials as ASCII files, or you can use the hard-coded potentials. You could easily extend these hardcoded potentials to include your own ones as well.
- Output: ASCII files (usually on data/ and data/snapshot).
- Post-processing scripts: Python scripts that allow spherical harmonics projections, symmetrization,...

• • • • • • • • • • • • •

- We implement full 3D kinetic terms, hence there is **no restriction over the symmetry** of the (arbitrary) external potential.
- quantumfdtd is coded in C++ and uses the MPI, FFTW_MPI v.3, GNU Scientific Library (GSL), and CBLAS libraries.
- For the post-processing scripts, Python 3 (with Pandas library), gnuplot and Bash are employed.
- Input: the program accepts a configuration file (usually, on input/params.txt and (optional) command line arguments.
- New feature: the program can accept arbitrary external potentials as ASCII files, or you can use the hard-coded potentials. You could easily extend these hardcoded potentials to include your own ones as well.
- Output: ASCII files (usually on data/ and data/snapshot).
- Post-processing scripts: Python scripts that allow spherical harmonics projections, symmetrization,...

くロト く伺 ト くきト くきト

- We implement full 3D kinetic terms, hence there is **no restriction over the symmetry** of the (arbitrary) external potential.
- quantumfdtd is coded in C++ and uses the MPI, FFTW_MPI v.3, GNU Scientific Library (GSL), and CBLAS libraries.
- For the post-processing scripts, Python 3 (with Pandas library), gnuplot and Bash are employed.
- Input: the program accepts a configuration file (usually, on input/params.txt and (optional) command line arguments.
- New feature: the program can accept arbitrary external potentials as ASCII files, or you can use the hard-coded potentials. You could easily extend these hardcoded potentials to include your own ones as well.
- Output: ASCII files (usually on data/ and data/snapshot).
- Post-processing scripts: Python scripts that allow spherical harmonics projections, symmetrization,...

- We implement full 3D kinetic terms, hence there is **no restriction over the symmetry** of the (arbitrary) external potential.
- quantumfdtd is coded in C++ and uses the MPI, FFTW_MPI v.3, GNU Scientific Library (GSL), and CBLAS libraries.
- For the post-processing scripts, Python 3 (with Pandas library), gnuplot and Bash are employed.
- Input: the program accepts a configuration file (usually, on input/params.txt and (optional) command line arguments.
- New feature: the program can accept arbitrary external potentials as ASCII files, or you can use the hard-coded potentials. You could easily extend these hardcoded potentials to include your own ones as well.
- Output: ASCII files (usually on data/ and data/snapshot).
- Post-processing scripts: Python scripts that allow spherical harmonics projections, symmetrization,...

$$H=H_K+V(\vec{r})$$

- The usual non-relativistic term is $H_K^{nr} = \sum_{i=1,2,3} \frac{p_i^2}{2m}$, where $\vec{p} = (p_1, p_2, p_3)$ is the spatial three momentum.
- This non-relativistic term was coded in old quantumfdtd.
- New in quantumfdtd v3: relativistic kinetic term,

$$H_K^{rel} = \sqrt{m^2 + \sum_{i=1,2,3} p_i^2}$$

$$H=H_{K}+V(\vec{r})$$

- The usual non-relativistic term is $H_K^{nr} = \sum_{i=1,2,3} \frac{p_i^2}{2m}$, where $\vec{p} = (p_1, p_2, p_3)$ is the spatial three momentum.
- This non-relativistic term was coded in old quantumfdtd.
- New in quantumfdtd v3: relativistic kinetic term,

$$H_K^{rel} = \sqrt{m^2 + \sum_{i=1,2,3} p_i^2}$$

$$H=H_{K}+V(\vec{r})$$

- The usual non-relativistic term is $H_K^{nr} = \sum_{i=1,2,3} \frac{p_i^2}{2m}$, where $\vec{p} = (p_1, p_2, p_3)$ is the spatial three momentum.
- This non-relativistic term was coded in old quantumfdtd.
- New in quantumfdtd v3: relativistic kinetic term,

$$H_K^{rel} = \sqrt{m^2 + \sum_{i=1,2,3} p_i^2}$$

$$H = H_{K} + V(\vec{r})$$

- The usual non-relativistic term is $H_K^{nr} = \sum_{i=1,2,3} \frac{p_i^2}{2m}$, where $\vec{p} = (p_1, p_2, p_3)$ is the spatial three momentum.
- This non-relativistic term was coded in old quantumfdtd.
- New in quantumfdtd v3: relativistic kinetic term,

$$\mathcal{H}_{\mathcal{K}}^{rel} = \sqrt{m^2 + \sum_{i=1,2,3} p_i^2}$$

Evaluation of the kinetic term: FDTD

 Old quantumfdtd uses finite-diference time-domain (FDTD) method with Dirichlet boundary conditions, Ψ(boundary) ≡ 0:

$$\begin{split} \mathcal{H}_{\mathcal{K}}^{(0)}\Psi &= -\frac{1}{2M}\sum_{l=\pm 1}^{\pm 3}\frac{1}{2A}\frac{\Psi(\vec{r}+\hat{e}_l)-\Psi(\vec{r})}{A},\\ \vec{r} &\equiv (Ax_1,Ax_2,Ax_3), \quad x_1,x_2,x_3 \in \{0,1,\ldots,N-1\} \end{split}$$

• On momentum space, the equivalent Hamiltonian is:

$$H_K^{(0)}\Psi(\vec{p}) = \frac{1}{2M}\sum_{l=1}^3 \frac{4}{A^2}\sin^2\left(\frac{Ap_l}{2}\right)\Psi(\vec{p}), \quad k_l \equiv Ap_l$$

Evaluation of the kinetic term: FDTD

 Old quantumfdtd uses finite-diference time-domain (FDTD) method with Dirichlet boundary conditions, Ψ(boundary) ≡ 0:

$$egin{aligned} \mathcal{H}_{\mathcal{K}}^{(0)}\Psi&=-rac{1}{2M}\sum_{l=\pm1}^{\pm3}rac{1}{2A}rac{\Psi(ec{r}+\hat{e}_l)-\Psi(ec{r})}{A},\ ec{r}&\equiv(Ax_1,Ax_2,Ax_3),\quad x_1,x_2,x_3\in\{0,1,\ldots,N-1\}. \end{aligned}$$

• On momentum space, the equivalent Hamiltonian is:

$$H_K^{(0)}\Psi(\vec{p}) = rac{1}{2M}\sum_{l=1}^3rac{4}{A^2}\sin^2\left(rac{Ap_l}{2}
ight)\Psi(\vec{p}), \quad k_l\equiv Ap_l$$

Fast Fourier Transform

- Three new kinetic terms $(H_K^{(1,2,3)})$: we use the Fast Fourier Transform (FFT) to go from position to momentum space; evaluate H_K ; and use the Inverse FFT (IFFT) to go back to position space.
- FFT \Longrightarrow **periodic** boundary conditions.
- *H_K⁽¹⁾* and *H_K⁽²⁾*: non-relativistic kinetic terms; *H_K⁽¹⁾* uses naive
 FFT-based differentiation; *H_K⁽²⁾* uses the correct momentum space (via Symanzik effective field theory) on a finite and periodic lattice.

$$H_{K}^{(1)}\Psi = \frac{1}{2A^{2}MN^{3}} \cdot \mathsf{IFFT}\left[\sum_{l=1}^{3} (k_{l})^{2} \cdot \mathsf{FFT}[\Psi]\right]$$
$$H_{K}^{(2)}\Psi = \frac{1}{2A^{2}MN^{3}} \cdot \mathsf{IFFT}\left[4\sum_{l=1}^{3} \sin^{2}\left(\frac{k_{l}}{2}\right) \cdot \mathsf{FFT}[\Psi]\right]$$

Fast Fourier Transform

- Three new kinetic terms $(H_K^{(1,2,3)})$: we use the Fast Fourier Transform (FFT) to go from position to momentum space; evaluate H_K ; and use the Inverse FFT (IFFT) to go back to position space.
- FFT \implies **periodic** boundary conditions.
- *H*⁽¹⁾_K and *H*⁽²⁾_K: non-relativistic kinetic terms; *H*⁽¹⁾_K uses naive
 FFT-based differentiation; *H*⁽²⁾_K uses the correct momentum space (via Symanzik effective field theory) on a finite and periodic lattice.

$$H_{K}^{(1)}\Psi = \frac{1}{2A^{2}MN^{3}} \cdot \mathsf{IFFT}\left[\sum_{l=1}^{3} (k_{l})^{2} \cdot \mathsf{FFT}[\Psi]\right]$$
$$H_{K}^{(2)}\Psi = \frac{1}{2A^{2}MN^{3}} \cdot \mathsf{IFFT}\left[4\sum_{l=1}^{3} \sin^{2}\left(\frac{k_{l}}{2}\right) \cdot \mathsf{FFT}[\Psi]\right]$$

Fast Fourier Transform

- Three new kinetic terms $(H_K^{(1,2,3)})$: we use the Fast Fourier Transform (FFT) to go from position to momentum space; evaluate H_K ; and use the Inverse FFT (IFFT) to go back to position space.
- FFT \implies **periodic** boundary conditions.
- *H*⁽¹⁾_K and *H*⁽²⁾_K: non-relativistic kinetic terms; *H*⁽¹⁾_K uses naive
 FFT-based differentiation; *H*⁽²⁾_K uses the correct momentum space (via Symanzik effective field theory) on a finite and periodic lattice.

$$H_{K}^{(1)}\Psi = \frac{1}{2A^{2}MN^{3}} \cdot \mathsf{IFFT}\left[\sum_{l=1}^{3} (k_{l})^{2} \cdot \mathsf{FFT}[\Psi]\right]$$
$$H_{K}^{(2)}\Psi = \frac{1}{2A^{2}MN^{3}} \cdot \mathsf{IFFT}\left[4\sum_{l=1}^{3} \sin^{2}\left(\frac{k_{l}}{2}\right) \cdot \mathsf{FFT}[\Psi]\right]$$

The iterative procedure

• In order to extract the ground, second and third excited states wavefunctions $(\Psi_{0,1,2})$ and energies $(E_{0,1,2})$, we use the same iterative procedure that was coded on legacy quantumfdtd, based on a Wick rotation of the Schrödinger Equation $(it \rightarrow \tau)$

$$\begin{split} \Psi(x_1, x_2, x_3, \tau + \Delta \tau) &= \mathcal{A} \Psi(x_1, x_2, x_3, \tau) - \mathcal{B} \Delta \tau \mathcal{H}_{\mathcal{K}} \Psi(x_1, x_2, x_3, \tau) \\ \mathcal{A} &= \frac{1 - \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})}{1 + \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})}, \quad \mathcal{B} = \frac{1}{1 + \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})} \end{split}$$

• The evolution with au is given by

$$\Psi(x_1, x_2, x_3, \tau) = \sum_{i=0}^{\infty} a_n \Psi_i(x_1, x_2, x_3) e^{-E_i \tau},$$

where $\{a_0, a_1, ...\}$ are the decomposition coefficients of the initial guess $\Psi(x_1, x_2, x_3, 0)$ in the basis of eigenvectors.

 An overlap procedure is used for the numerical extraction of the first and second excited states.

The iterative procedure

• In order to extract the ground, second and third excited states wavefunctions $(\Psi_{0,1,2})$ and energies $(E_{0,1,2})$, we use the same iterative procedure that was coded on legacy quantumfdtd, based on a Wick rotation of the Schrödinger Equation $(it \rightarrow \tau)$

$$\begin{split} \Psi(x_1, x_2, x_3, \tau + \Delta \tau) &= \mathcal{A}\Psi(x_1, x_2, x_3, \tau) - \mathcal{B}\Delta \tau \mathcal{H}_{\mathcal{K}}\Psi(x_1, x_2, x_3, \tau) \\ \mathcal{A} &= \frac{1 - \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})}{1 + \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})}, \quad \mathcal{B} = \frac{1}{1 + \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})} \end{split}$$

• The evolution with au is given by

$$\Psi(x_1, x_2, x_3, \tau) = \sum_{i=0}^{\infty} a_n \Psi_i(x_1, x_2, x_3) e^{-E_i \tau},$$

where $\{a_0, a_1, ...\}$ are the decomposition coefficients of the initial guess $\Psi(x_1, x_2, x_3, 0)$ in the basis of eigenvectors.

An overlap procedure is used for the numerical extraction of the first and second excited states.

The iterative procedure

• In order to extract the ground, second and third excited states wavefunctions $(\Psi_{0,1,2})$ and energies $(E_{0,1,2})$, we use the same iterative procedure that was coded on legacy quantumfdtd, based on a Wick rotation of the Schrödinger Equation $(it \rightarrow \tau)$

$$\begin{split} \Psi(x_1, x_2, x_3, \tau + \Delta \tau) &= \mathcal{A}\Psi(x_1, x_2, x_3, \tau) - \mathcal{B}\Delta \tau \mathcal{H}_{\mathcal{K}}\Psi(x_1, x_2, x_3, \tau) \\ \mathcal{A} &= \frac{1 - \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})}{1 + \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})}, \quad \mathcal{B} = \frac{1}{1 + \frac{\Delta \tau}{2} \mathcal{V}(\vec{r})} \end{split}$$

• The evolution with τ is given by

$$\Psi(x_1, x_2, x_3, \tau) = \sum_{i=0}^{\infty} a_n \Psi_i(x_1, x_2, x_3) e^{-E_i \tau},$$

where $\{a_0, a_1, ...\}$ are the decomposition coefficients of the initial guess $\Psi(x_1, x_2, x_3, 0)$ in the basis of eigenvectors.

 An overlap procedure is used for the numerical extraction of the first and second excited states.

Parity projections

 In order to extract the excited states, we include a Python script that allows for computing the positive P⁺, negative P⁻ and negative-around-an-axis P⁻_{pµ} parity projections of a wave-function,

$$P^{\pm}\Psi(\vec{r}) = \frac{1}{2} \left[\Psi(\vec{r}) \pm \Psi(-\vec{r})\right]$$

$$P^{-}_{\vec{p}_{k}=\hat{e}_{3}}\Psi(x_{1}, x_{2}, x_{3}) = \frac{1}{2} \left[\Psi(x_{1}, x_{2}, x_{3}) + \Psi(-x_{1}, -x_{2}, x_{3}) - \Psi(x_{1}, x_{2}, -x_{3}) - \Psi(-x_{1}, -x_{2}, -x_{3})\right]$$

- We also include a script for enforcing the normalization of wave-functions within the lattice volume V, ∫_ν dV|Ψ|² = 1.
- These scripts are included on top of an option in quantumfdtd that allows for enforcing symmetry restrictions within the iterative procedure itself.

・四・・ヨ・・ヨ・

Parity projections

 In order to extract the excited states, we include a Python script that allows for computing the positive P⁺, negative P⁻ and negative-around-an-axis P⁻_{Pk} parity projections of a wave-function,

$$P^{\pm}\Psi(\vec{r}) = \frac{1}{2} \left[\Psi(\vec{r}) \pm \Psi(-\vec{r})\right]$$

$$P^{-}_{\vec{p}_{k}=\hat{e}_{3}}\Psi(x_{1}, x_{2}, x_{3}) = \frac{1}{2} \left[\Psi(x_{1}, x_{2}, x_{3}) + \Psi(-x_{1}, -x_{2}, x_{3}) - \Psi(x_{1}, x_{2}, -x_{3}) - \Psi(-x_{1}, -x_{2} - x_{3})\right]$$

- We also include a script for enforcing the normalization of wave-functions within the lattice volume V, ∫_V dV |Ψ|² = 1.
- These scripts are included on top of an option in quantumfdtd that allows for enforcing symmetry restrictions within the iterative procedure itself.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Parity projections

 In order to extract the excited states, we include a Python script that allows for computing the positive P⁺, negative P⁻ and negative-around-an-axis P⁻_{pµ} parity projections of a wave-function,

$$P^{\pm}\Psi(\vec{r}) = \frac{1}{2} \left[\Psi(\vec{r}) \pm \Psi(-\vec{r})\right]$$

$$P^{-}_{\vec{p}_{k}=\hat{e}_{3}}\Psi(x_{1}, x_{2}, x_{3}) = \frac{1}{2} \left[\Psi(x_{1}, x_{2}, x_{3}) + \Psi(-x_{1}, -x_{2}, x_{3}) - \Psi(x_{1}, x_{2}, -x_{3}) - \Psi(-x_{1}, -x_{2} - x_{3})\right]$$

- We also include a script for enforcing the normalization of wave-functions within the lattice volume V, ∫_ν dV|Ψ|² = 1.
- These scripts are included on top of an option in quantumfdtd that allows for enforcing symmetry restrictions within the iterative procedure itself.

Initial conditions and studied cases

• We use a Coulomb potential for the following analysis.

• Initial guess: Coulomb-like initial conditions centered on the lattice volume. Actually, this is an initial guess with a linear combination of the states 1s, 2s, 2p (m = 0), and the real part of the $2p (m = \pm 1)$.

- Lattice spacing A = 0.12 fm
 Unless otherwise stated,
 N = 64 centered on the lattice volume.
 - Unless otherwise stated, M = 0.3 GeV.
 - (A · M)² ≈ 0.03 ⇒ mild finite mass discretization errors

- We use a Coulomb potential for the following analysis.
- Initial guess: Coulomb-like initial conditions centered on the lattice volume. Actually, this is an initial guess with a linear combination of the states 1s, 2s, 2p (m = 0), and the real part of the 2p ($m = \pm 1$).

- Lattice spacing A = 0.12 fm Unless otherwise stated, N = 64 centered on the lattice volume.
- Unless otherwise stated, *M* = 0.3 GeV.
- $(A \cdot M)^2 \approx 0.03 \Rightarrow$ mild finite mass discretization errors

- We use a Coulomb potential for the following analysis.
- Initial guess: Coulomb-like initial conditions centered on the lattice volume. Actually, this is an initial guess with a linear combination of the states 1s, 2s, 2p (m = 0), and the real part of the 2p ($m = \pm 1$).

- Lattice spacing A = 0.12 fm Unless otherwise stated, N = 64 centered on the lattice volume.
- Unless otherwise stated, *M* = 0.3 GeV.
- $(A \cdot M)^2 \approx 0.03 \Rightarrow$ mild finite mass discretization errors

- We use a Coulomb potential for the following analysis.
- Initial guess: Coulomb-like initial conditions centered on the lattice volume. Actually, this is an initial guess with a linear combination of the states 1s, 2s, 2p (m = 0), and the real part of the 2p ($m = \pm 1$).

- Lattice spacing $A = 0.12 \,\mathrm{fm}$
- Unless otherwise stated,
 N = 64 centered on the lattice volume.
- Unless otherwise stated, $M = 0.3 \, {
 m GeV}.$
- (A · M)² ≈ 0.03 ⇒ mild finite mass discretization errors

- We use a Coulomb potential for the following analysis.
- Initial guess: Coulomb-like initial conditions centered on the lattice volume. Actually, this is an initial guess with a linear combination of the states 1s, 2s, 2p (m = 0), and the real part of the 2p ($m = \pm 1$).

- Lattice spacing $A = 0.12 \,\mathrm{fm}$
- Unless otherwise stated,
 N = 64 centered on the lattice volume.
- Unless otherwise stated, $M = 0.3 \, {
 m GeV}.$
- (A · M)² ≈ 0.03 ⇒ mild finite mass discretization errors

- We use a Coulomb potential for the following analysis.
- Initial guess: Coulomb-like initial conditions centered on the lattice volume. Actually, this is an initial guess with a linear combination of the states 1s, 2s, 2p (m = 0), and the real part of the 2p ($m = \pm 1$).

- Lattice spacing $A = 0.12 \,\mathrm{fm}$
- Unless otherwise stated,
 N = 64 centered on the lattice volume.
- Unless otherwise stated, $M = 0.3 \,\mathrm{GeV}.$
- (A · M)² ≈ 0.03 ⇒ mild finite mass discretization errors

- We use a Coulomb potential for the following analysis.
- Initial guess: Coulomb-like initial conditions centered on the lattice volume. Actually, this is an initial guess with a linear combination of the states 1s, 2s, 2p (m = 0), and the real part of the 2p ($m = \pm 1$).

- Lattice spacing $A = 0.12 \,\mathrm{fm}$
- Unless otherwise stated,
 N = 64 centered on the lattice volume.
- Unless otherwise stated, $M = 0.3 \,\mathrm{GeV}.$
- (A · M)² ≈ 0.03 ⇒ mild finite mass discretization errors

• $H_{K}^{(0)}$ (solid), $H_{K}^{(1)}$ (dashed) and $H_{K}^{(2)}$ (dotted). Left: N = 64; right: N = 128.

- Very small differences between $H_K^{(1)}$ and $H_K^{(2)}$, even with N = 64.
- The differences between H⁽⁰⁾_K (FDTD) and H⁽²⁾_K (FFT) kinetic terms that were evident with N = 64 are almost negligible with N = 128.
- *N* = 64: finite volume effects (boundary conditions!!) are evident. FDTD uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

・ロト ・ 同ト ・ ヨト ・ ヨト

- $H_{K}^{(0)}$ (solid), $H_{K}^{(1)}$ (dashed) and $H_{K}^{(2)}$ (dotted). Left: N = 64; right: N = 128.
- Very small differences between $H_K^{(1)}$ and $H_K^{(2)}$, even with N = 64.
- The differences between $H_K^{(0)}$ (FDTD) and $H_K^{(2)}$ (FFT) kinetic terms that were evident with N = 64 are almost negligible with N = 128.

 N = 64: finite volume effects (boundary conditions!!) are evident. FDTD uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

• $H_{K}^{(0)}$ (solid), $H_{K}^{(1)}$ (dashed) and $H_{K}^{(2)}$ (dotted). Left: N = 64; right: N = 128.

- Very small differences between $H_K^{(1)}$ and $H_K^{(2)}$, even with N = 64.
- The differences between $H_{\kappa}^{(0)}$ (FDTD) and $H_{\kappa}^{(2)}$ (FFT) kinetic terms that were evident with N = 64 are almost negligible with N = 128.

 N = 64: finite volume effects (boundary conditions!!) are evident. FDTD uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

• $H_{K}^{(0)}$ (solid), $H_{K}^{(1)}$ (dashed) and $H_{K}^{(2)}$ (dotted). Left: N = 64; right: N = 128.

- Very small differences between $H_K^{(1)}$ and $H_K^{(2)}$, even with N = 64.
- The differences between $H_{\kappa}^{(0)}$ (FDTD) and $H_{\kappa}^{(2)}$ (FFT) kinetic terms that were evident with N = 64 are almost negligible with N = 128.
- *N* = 64: finite volume effects (boundary conditions!!) are evident. FDTD uses Dirichlet boundary cond. and FFT, periodic ones. Next slide.

Wave-functions for the non-relativistic $H_K^{(0)}$ and $H_K^{(2)}$

Wave-functions for the non-relativistic $H_K^{(0)}$ and $H_K^{(2)}$

Modified Harmonic oscillator: a test for the relativistic $H_K^{(3)}$

- In order to compare the H_K⁽³⁾ kinetic term implementation with the literature, we are using the Harmonic oscillator, for which an analytical solution in momentum space exists [Z.F.Li et. al., J.Math.Phys.46, 103514].
- We have implemented such an analytical solution on Fortran: https://github.com/quantumfdtd/relativistic_harmonic_oscillator
- Appropriate parameters for comparison with the literature: N = 256, M = 30 GeV, A = 0.006 fm, (A ⋅ M)² ≈ 0.81 (discretization errors and large mass!).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Modified Harmonic oscillator: a test for the relativistic $H_K^{(3)}$

- In order to compare the H⁽³⁾_K kinetic term implementation with the literature, we are using the Harmonic oscillator, for which an analytical solution in momentum space exists [Z.F.Li et. al., J.Math.Phys.46, 103514].
- We have implemented such an analytical solution on Fortran: https://github.com/quantumfdtd/relativistic_harmonic_oscillator

 Appropriate parameters for comparison with the literature: N = 256, M = 30 GeV, A = 0.006 fm, (A ⋅ M)² ≈ 0.81 (discretization errors and large mass!).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Modified Harmonic oscillator: a test for the relativistic $H_K^{(3)}$

- In order to compare the H⁽³⁾_K kinetic term implementation with the literature, we are using the Harmonic oscillator, for which an analytical solution in momentum space exists [Z.F.Li et. al., J.Math.Phys.46, 103514].
- We have implemented such an analytical solution on Fortran: https://github.com/quantumfdtd/relativistic_harmonic_oscillator
- Appropriate parameters for comparison with the literature: N = 256, M = 30 GeV, A = 0.006 fm, $(A \cdot M)^2 \approx 0.81$ (discretization errors and large mass!).

Modified Harmonic oscillator: a test for the relativistic $H_{K}^{(3)}$

Conclusions: extensions to quantumfdtd

• We have extended the previous code quantumfdtd v.2 to quantumfdtd v.3.

- We have implemented 2 additional non-relativistic kinetic terms, that are based on Fast Fourier Transform.
- We have implemented a new FFT-based relativistic kinetic term.
- The new code accepts arbitrary potential via external files according to a format described on [Comput.Phys.Commun.**272**, 108250]
- We allow for dumping full wave-functions as snapshots. This is specially valuable for extracting excited states.
- Small additional changes: cleanup of the code; we do not require an additional MPI node for controlling,...

- We have extended the previous code quantumfdtd v.2 to quantumfdtd v.3.
- We have implemented 2 additional non-relativistic kinetic terms, that are based on Fast Fourier Transform.
- We have implemented a new FFT-based relativistic kinetic term.
- The new code accepts arbitrary potential via external files according to a format described on [Comput.Phys.Commun.**272**, 108250]
- We allow for dumping full wave-functions as snapshots. This is specially valuable for extracting excited states.
- Small additional changes: cleanup of the code; we do not require an additional MPI node for controlling,...

- We have extended the previous code quantumfdtd v.2 to quantumfdtd v.3.
- We have implemented 2 additional non-relativistic kinetic terms, that are based on Fast Fourier Transform.
- We have implemented a new FFT-based relativistic kinetic term.
- The new code accepts arbitrary potential via external files according to a format described on [Comput.Phys.Commun.**272**, 108250]
- We allow for dumping full wave-functions as snapshots. This is specially valuable for extracting excited states.
- Small additional changes: cleanup of the code; we do not require an additional MPI node for controlling,...

- We have extended the previous code quantumfdtd v.2 to quantumfdtd v.3.
- We have implemented 2 additional non-relativistic kinetic terms, that are based on Fast Fourier Transform.
- We have implemented a new FFT-based relativistic kinetic term.
- The new code accepts arbitrary potential via external files according to a format described on [Comput.Phys.Commun.**272**, 108250]
- We allow for dumping full wave-functions as snapshots. This is specially valuable for extracting excited states.
- Small additional changes: cleanup of the code; we do not require an additional MPI node for controlling,...

- We have extended the previous code quantumfdtd v.2 to quantumfdtd v.3.
- We have implemented 2 additional non-relativistic kinetic terms, that are based on Fast Fourier Transform.
- We have implemented a new FFT-based relativistic kinetic term.
- The new code accepts arbitrary potential via external files according to a format described on [Comput.Phys.Commun.**272**, 108250]
- We allow for dumping full wave-functions as snapshots. This is specially valuable for extracting excited states.
- Small additional changes: cleanup of the code; we do not require an additional MPI node for controlling,...

- We have extended the previous code quantumfdtd v.2 to quantumfdtd v.3.
- We have implemented 2 additional non-relativistic kinetic terms, that are based on Fast Fourier Transform.
- We have implemented a new FFT-based relativistic kinetic term.
- The new code accepts arbitrary potential via external files according to a format described on [Comput.Phys.Commun.**272**, 108250]
- We allow for dumping full wave-functions as snapshots. This is specially valuable for extracting excited states.
- Small additional changes: cleanup of the code; we do not require an additional MPI node for controlling,...

• The ground-state wave-function is stable for high values of the time evolution parameter τ .

- The overlap method is an approximation to project out the first and second excited states from the full wave-function.
- For sufficiently high values of τ, the excited states contribution will fall below the machine precision, eliminating the information about excited states.
- The parity projection scripts are a useful tool for separating excited states when they are nearly degenerated in energy which is especially noticeable for the 2s and the 2p-states.

- The ground-state wave-function is stable for high values of the time evolution parameter τ .
- The overlap method is an approximation to project out the first and second excited states from the full wave-function.
- For sufficiently high values of τ, the excited states contribution will fall below the machine precision, eliminating the information about excited states.
- The parity projection scripts are a useful tool for separating excited states when they are nearly degenerated in energy which is especially noticeable for the 2s and the 2p-states.

- The ground-state wave-function is stable for high values of the time evolution parameter τ .
- The overlap method is an approximation to project out the first and second excited states from the full wave-function.
- For sufficiently high values of τ , the excited states contribution will fall below the machine precision, eliminating the information about excited states.
- The parity projection scripts are a useful tool for separating excited states when they are nearly degenerated in energy which is especially noticeable for the 2s and the 2p-states.

- The ground-state wave-function is stable for high values of the time evolution parameter τ .
- The overlap method is an approximation to project out the first and second excited states from the full wave-function.
- For sufficiently high values of τ , the excited states contribution will fall below the machine precision, eliminating the information about excited states.
- The parity projection scripts are a useful tool for separating excited states when they are nearly degenerated in energy which is especially noticeable for the 2s and the 2p-states.

• Implementing a suitable binary format for the wave-functions.

- Implementing an automatized algorithm in order to look for saddle points of $E(\tau)$
- Implementing new projection operators (for instance, *d*-wave states). This may imply including contributions from higher states in the initial guess.
- Allowing for variations of the coupling strength of each potential.
- Implementing an implicit Crank-Nicolson method. It makes the evolution unconditionally stable regardless of the choice of time step Δτ. Issue: the relativistic Schrödinger equation is a non-linear partial differential equation.
- (Anti)-symmetric solution for a two-particle systems in a background potential with an interaction potential between the particles. Of interest for tetraquark phenomenology.

• • • • • • • • • • • •

- Implementing a suitable binary format for the wave-functions.
- Implementing an automatized algorithm in order to look for saddle points of $E(\tau)$
- Implementing new projection operators (for instance, *d*-wave states). This may imply including contributions from higher states in the initial guess.
- Allowing for variations of the coupling strength of each potential.
- Implementing an implicit Crank-Nicolson method. It makes the evolution unconditionally stable regardless of the choice of time step Δτ. Issue: the relativistic Schrödinger equation is a non-linear partial differential equation.
- (Anti)-symmetric solution for a two-particle systems in a background potential with an interaction potential between the particles. Of interest for tetraquark phenomenology.

• • • • • • • • • • • • •

- Implementing a suitable binary format for the wave-functions.
- Implementing an automatized algorithm in order to look for saddle points of $E(\tau)$
- Implementing new projection operators (for instance, *d*-wave states). This may imply including contributions from higher states in the initial guess.
- Allowing for variations of the coupling strength of each potential.
- Implementing an implicit Crank-Nicolson method. It makes the evolution unconditionally stable regardless of the choice of time step $\Delta \tau$. Issue: the relativistic Schrödinger equation is a non-linear partial differential equation.
- (Anti)-symmetric solution for a two-particle systems in a background potential with an interaction potential between the particles. Of interest for tetraquark phenomenology.

< □ > < □ > < □ > < □ > < □ > < □ >

- Implementing a suitable binary format for the wave-functions.
- Implementing an automatized algorithm in order to look for saddle points of $E(\tau)$
- Implementing new projection operators (for instance, *d*-wave states). This may imply including contributions from higher states in the initial guess.
- Allowing for variations of the coupling strength of each potential.
- Implementing an implicit Crank-Nicolson method. It makes the evolution unconditionally stable regardless of the choice of time step $\Delta \tau$. Issue: the relativistic Schrödinger equation is a non-linear partial differential equation.
- (Anti)-symmetric solution for a two-particle systems in a background potential with an interaction potential between the particles. Of interest for tetraquark phenomenology.

< □ > < □ > < □ > < □ > < □ > < □ >

- Implementing a suitable binary format for the wave-functions.
- Implementing an automatized algorithm in order to look for saddle points of $E(\tau)$
- Implementing new projection operators (for instance, *d*-wave states). This may imply including contributions from higher states in the initial guess.
- Allowing for variations of the coupling strength of each potential.
- Implementing an implicit Crank-Nicolson method. It makes the evolution unconditionally stable regardless of the choice of time step $\Delta \tau$. Issue: the relativistic Schrödinger equation is a non-linear partial differential equation.
- (Anti)-symmetric solution for a two-particle systems in a background potential with an interaction potential between the particles. Of interest for tetraquark phenomenology.

< □ > < 同 > < 回 > < 回 > < 回 >

- Implementing a suitable binary format for the wave-functions.
- Implementing an automatized algorithm in order to look for saddle points of $E(\tau)$
- Implementing new projection operators (for instance, *d*-wave states). This may imply including contributions from higher states in the initial guess.
- Allowing for variations of the coupling strength of each potential.
- Implementing an implicit Crank-Nicolson method. It makes the evolution unconditionally stable regardless of the choice of time step $\Delta \tau$. Issue: the relativistic Schrödinger equation is a non-linear partial differential equation.
- (Anti)-symmetric solution for a two-particle systems in a background potential with an interaction potential between the particles. Of interest for tetraquark phenomenology.

- 4 回 ト 4 ヨ ト 4 ヨ ト