The complex heavy-quark potential in an anisotropic quarkgluon plasma - Statics and dynamics

Lihua Dong, Yun Guo, Ajaharul Islam, Alexander Rothkopf, and Michael Strickland

(arXiv 2205.10349, May 20, 2022)

Speaker: Ajaharul Islam, Ph.D. Candidate

Center for Nuclear Research (CNR), Department of Physics, Kent State University, OH, USA

15th Quark Confinement and Hadron Spectrum Conference 4.20 pm, August 5, 2022

What we do?

We study the dynamics of heavy quarkonium states ($q\bar{q}$) inside the Quark Gluon Plasma (QGP)

$n^{2s+1}L_r$ **P**C Particle Mass (MeV) $1^{3}S_{1}$ 1--- $\Upsilon(1S)$ 9460.30 $1^{3}P_{0}$ 0^{++} $\chi_{b0}(1P)$ 9859.44 $1^{3}P_{1}$ 1^{++} $\chi_{b1}(1P)$ 9892.78 $1^{3}P_{2}$ 2++ $\chi_{b2}(1P)$ 9912.21 $2^{3}S_{1}$ 1--- $\Upsilon(2S)$ 10023.26 $2^{3}P_{0}$ 0++ $\chi_{b0}(2P)$ 10232.50 1^{++} $2^{3}P_{1}$ 10255.46 $\chi_{b1}(2P)$ $2^{3}P_{2}$ 2++ $\chi_{b2}(2P)$ 10268.65 $3^{3}S_{1}$ 1---10355.20 $\Upsilon(3S)$

Bottomonium: bb

IPC $n^{2s+1}L_I$ Particle Mass (MeV) $1^{3}S_{1}$ 1--- I/ψ 3096.90 $1^{3}P_{0}$ 0++ $\chi_{c0}(1P)$ 3414.71 $1^{3}P_{1}$ 1^{++} $\chi_{c1}(1P)$ 3510.67 $1^{3}P_{2}$ 2^{++} 3556.17 $\chi_{c2}(1P)$

Charmonium: cc

Suppression factor,

 $\begin{array}{ll} R_{AA} & = & \displaystyle \frac{\text{number produced in} AA}{\langle N_{\text{bin}}\rangle_b \;(\text{number produced in} \; pp)} \;\;,\; \langle N_{\text{bin}}\rangle_b = \text{number of nucleonic collisions} \\ & = \; 1 \;,\; \text{No effect} \\ & > \; 1 \;,\; \text{Enhancement} \\ & < \; 1 \;,\; \underset{\text{Suppression}}{\text{Suppression}} \end{array}$

Full complex potential \Rightarrow Solve SWE \Rightarrow Obtain observables such as R_{AA} and elliptic flow $(v_2) \Rightarrow$ Compare with experimental data available from the ATLAS, ALICE, and CMS collaborations.

Ajaharul Islam, Kent State U

What we did in our current work?

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

Ajaharul Islam, Kent State U

Isotropic Potential

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

• Perturbative contribution:

The complex HQ potential model in an isotropic QCD plasma is defined by a Fourier transform of the real time resummed gluon propagator in the static limit. Such a gluon propagator includes a perturbative contribution, which is calculable in the HTL resummed perturbation theory.

$$\begin{split} V(\lambda, r) &= -g^2 C_F \int \frac{d^3 \mathbf{p}}{(2\pi)^3} (e^{i\mathbf{p}\cdot\mathbf{r}} - 1) D^{00}(p_0 = 0, \mathbf{p}, \lambda) \\ \operatorname{Re} V_{\mathrm{pt}}(\lambda, r) &= -g^2 C_F \int \frac{d^3 \mathbf{p}}{(2\pi)^3} (e^{i\mathbf{p}\cdot\mathbf{r}} - 1) \left(\frac{1}{p^2 + m_D^2} - \frac{1}{p^2}\right) \equiv \alpha m_D(\mathcal{I}_1(\hat{r}) - 1) \\ \operatorname{Im} V_{\mathrm{pt}}(\lambda, r) &= -g^2 C_F \int \frac{d^3 \mathbf{p}}{(2\pi)^3} (e^{i\mathbf{p}\cdot\mathbf{r}} - 1) \frac{-\pi\lambda m_D^2}{p(p^2 + m_D^2)^2} \equiv \alpha \lambda (\mathcal{I}_2(\hat{r}) - 1) \end{split}$$

Where,

$$\mathcal{I}_1(\hat{r}) = 4\pi \int \frac{d^3 \hat{\mathbf{p}}}{(2\pi)^3} e^{i\hat{\mathbf{p}}\cdot\hat{\mathbf{r}}} \frac{1}{\hat{p}^2(\hat{p}^2+1)} = \frac{1-e^{-\hat{r}}}{\hat{r}}, \quad \mathcal{I}_2(\hat{r}) = 4\pi^2 \int \frac{d^3 \hat{\mathbf{p}}}{(2\pi)^3} e^{i\hat{\mathbf{p}}\cdot\hat{\mathbf{r}}} \frac{1}{\hat{p}(\hat{p}^2+1)^2} = \phi_2(\hat{r})$$

$$\phi_n(\hat{r}) = 2 \int_0^\infty dz \frac{\sin(z\hat{r})}{z\hat{r}} \frac{z}{(z^2+1)^n}$$

Ajaharul Islam, Kent State U

15th Confinement Conference 2022

4/14

Isotropic Potential (continued)

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

• Non-perturbative contribution:

The gluon propagator also includes a non-perturbative string contribution originating from the dimension two gluon condensate.

$$\operatorname{Re} V_{\mathrm{npt}}(\lambda, r) = -g^2 C_F m_G^2 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} (e^{i\mathbf{p}\cdot\mathbf{r}} - 1) \frac{p^2 + 5m_D^2}{(p^2 + m_D^2)^3} \equiv -\frac{2\sigma}{m_D} (\mathcal{I}_3(\hat{r}) - 1)$$
$$\operatorname{Im} V_{\mathrm{npt}}(\lambda, r) = -g^2 C_F m_G^2 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} (e^{i\mathbf{p}\cdot\mathbf{r}} - 1) \frac{4\pi\lambda m_D^2 (p^2 - 2m_D^2)}{p(p^2 + m_D^2)^4} \equiv \frac{4\sigma\lambda}{m_D^2} (\mathcal{I}_4(\hat{r}) - 1)$$

Where,

$$\begin{split} \mathcal{I}_3(\hat{r}) &= 4\pi \int \frac{d^3 \hat{\mathbf{p}}}{(2\pi)^3} e^{i\hat{\mathbf{p}}\cdot\hat{\mathbf{r}}} \frac{\hat{p}^2 + 5}{(\hat{p}^2 + 1)^3} = (1 + \hat{r}/2) e^{-\hat{r}} \,, \\ \mathcal{I}_4(\hat{r}) &= 8\pi^2 \int \frac{d^3 \hat{\mathbf{p}}}{(2\pi)^3} e^{i\hat{\mathbf{p}}\cdot\hat{\mathbf{r}}} \frac{2 - \hat{p}^2}{\hat{p}(\hat{p}^2 + 1)^4} = -2\phi_3(\hat{r}) + 6\phi_4(\hat{r}) \,. \end{split}$$

Ajaharul Islam, Kent State U

Isotropic potential (continued...)

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022 Total potential

= perturbative contribution + non-perturbative contribution

$$\operatorname{Re} V_{\operatorname{Iso}}(r) = \alpha m_D \left(\frac{1 - e^{-rm_D}}{rm_D}\right) - \alpha m_D - \frac{\sigma}{m_D} (2 + rm_D) e^{-rm_D} + \frac{2\sigma}{m_D} - \frac{\alpha}{r} - \frac{0.8\sigma}{m_Q^2 r}$$
$$\operatorname{Im} V_{\operatorname{Iso}}(r) = \alpha \lambda \phi_2 (rm_D) - \alpha \lambda - \frac{8\sigma \lambda}{m_D^2} \phi_3 (rm_D) + \frac{24\sigma \lambda}{m_D^2} \phi_4 (rm_D) - \frac{4\sigma \lambda}{m_D^2}$$

$$m_D = Ag\lambda \sqrt{\frac{N_C}{3} + \frac{N_F}{6}}$$

 λ is a temperature-like scale which, only in the thermal equilibrium limit, should be understood as the temperature T of the system.

$$\alpha_s = \frac{g^2}{4\pi}, \quad \alpha = \alpha_s \ C_F, \quad C_F = \frac{N_C^2 - 1}{2N_C}, \quad N_C = 3, \quad N_F = 2, \quad C_F = \frac{4}{3}$$

 $A = 1.4, \quad g = 1.72, \quad \alpha = 0.272, \quad \sigma = 0.215 \ GeV^2, \ m_b = 4.7 \ GeV, \quad m_c = 1.3 \ GeV$

Ajaharul Islam, Kent State U

QGP momentum anisotropy cartoon

Ajaharul Islam, Kent State U

Anisotropic Distribution Function

P. Romatschke and M. Strickland : Phys. Rev. D 68, 036004 (2004), Phys. Rev. D 70, 116006 (2004)

 In order to model the physical processes occurring in heavy-ion experiments, the following anisotropic distribution function of Romatschke-Strickland form is used extensively

$$f_{\rm aniso}^{\rm LRF}(\mathbf{k}) \equiv f_{\rm iso} \left(\frac{1}{\lambda} \sqrt{\mathbf{k}^2 + \xi (\mathbf{k} \cdot \mathbf{n})^2}\right)$$

• It takes into account the rapid longitudinal expansion of the QGP, which results in momentum anisotropy in the local rest frame (LRF)

An adjustable parameter ξ in the range $-1 < \xi < \infty$ is used to quantify the degree of momentum-space anisotropy

$$\xi = \frac{1}{2} \frac{\langle \mathbf{k}_{\perp}^2 \rangle}{\langle k_z^2 \rangle} - 1 \,,$$

where $k_z \equiv \mathbf{k} \cdot \mathbf{n}$ and $\mathbf{k}_{\perp} \equiv \mathbf{k} - \mathbf{n}(\mathbf{k} \cdot \mathbf{n})$ correspond to the particle momenta along and perpendicular to the direction of anisotropy, respectively.

Ajaharul Islam, Kent State U

3D Anisotropic Potential

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

$$\operatorname{Re} V_{\operatorname{Aniso}}(r,\theta,\xi) = \alpha m_D^A \left(\frac{1 - e^{-rm_D^R}}{rm_D^R} \right) - \alpha m_D^A - \frac{\sigma}{m_D^A} \left(2 + rm_D^R \right) e^{-rm_D^R} + \frac{2\sigma}{m_D^A} - \frac{\alpha}{r} - \frac{0.8\sigma}{m_Q^2 r}$$

$$\operatorname{Im} V_{\operatorname{Aniso}}(r,\theta,\xi) = \alpha \lambda^{A} \phi_{2} \left(rm_{D}^{I} \right) - \alpha \lambda^{A} - \frac{8\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{3} \left(rm_{D}^{I} \right) + \frac{24\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(rm_{D}^{A} \right) -$$

where,

$$m_D^A = m_D \left(1 - \frac{\xi}{6} \right) , \quad \lambda^A = \lambda \left(1 - \frac{\xi}{6} \right)$$
$$m_D^R = m_D \left[1 + \xi \left(0.108 \cos 2\theta - 0.131 \right) \right] , \quad m_D^I = m_D \left[1 + \xi \left(0.026 \cos 2\theta - 0.158 \right) \right]$$

Disadvantages:

- (1) The angular dependence in the potential model requires solving a 3D Schrodinger eq.
- (2) Time consuming and much more complicated, compared to the case where a spherically symmetric HQ potential can be used.
- (3) This is indeed the main obstacle to developing phenomenological applications which include momentum-anisotropy effects.

Ajaharul Islam, Kent State U

1D Effective Potential

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

As proposed in our work, one possible solution to this difficulty is to employ an angle-averaged effective screening mass

$$\mathcal{M}_{lm}(\lambda,\xi) = \langle \mathbf{Y}_{lm}(\theta,\phi) | \tilde{m}_D(\lambda,\xi,\theta) | \mathbf{Y}_{lm}(\theta,\phi) \rangle,$$

= $\int_{-1}^1 d\cos\theta \int_0^{2\pi} d\phi \mathbf{Y}_{lm}(\theta,\phi) \tilde{m}_D(\lambda,\xi,\theta) \mathbf{Y}^*_{lm}(\theta,\phi)$

and where $Y_{lm}(\theta, \phi)$ refers to the spherical harmonics with azimuthal quantum number l and magnetic quantum number m. The idea is to replace the anisotropic screening mass with $\mathcal{M}_{lm}(\lambda, \xi)$ which recovers the spherical symmetry in the potential model, thus significantly simplifying the numerics.

$$\operatorname{Im} V_{\operatorname{Eff}}(r,\xi) = \alpha m_D^A \left(\frac{1 - e^{-r\mathcal{M}_{lm}^R}}{r\mathcal{M}_{lm}^R} \right) - \alpha m_D^A - \frac{\sigma}{m_D^A} \left(2 + r\mathcal{M}_{lm}^R \right) e^{-r\mathcal{M}_{lm}^R} + \frac{2\sigma}{m_D^A} - \frac{\alpha}{r} - \frac{0.8\sigma}{m_Q^2 r}$$

$$\operatorname{Im} V_{\operatorname{Eff}}(r,\xi) = \alpha \lambda^{A} \phi_{2} \left(r \mathcal{M}_{lm}^{I} \right) - \alpha \lambda^{A} - \frac{8\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{3} \left(r \mathcal{M}_{lm}^{I} \right) + \frac{24\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{D}^{A} \right)^{2}} \phi_{4} \left(r \mathcal{M}_{lm}^{I} \right) - \frac{4\sigma \lambda^{A}}{\left(m_{$$

where,

$$K_{lm} = \frac{2l(l+1) - 2m^2 - 1}{4l(l+1) - 3}$$
$$\mathcal{M}_{lm}^R = m_D \bigg[1 + \xi \left(0.216K_{lm} - 0.239 \right) \bigg], \quad \mathcal{M}_{lm}^I = m_D \bigg[1 + \xi \left(0.052K_{lm} - 0.184 \right) \bigg]$$

Ajaharul Islam, Kent State U

Static Results: Bottomonium and Charmonium

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

$\Upsilon(1S)$	${ m Re}E$	$\delta \mathrm{Re}E$	$E_{\rm bind}$	$\mathrm{Im}E$	$\delta \mathrm{Im}E$
T_o	182.869	0.611	-662.669	11.838	0.027
$1.1T_o$	174.957	0.593	-570.612	14.830	0.031
$1.2T_o$	166.556	0.573	-493.689	18.190	0.034
$1.4T_o$	148.439	0.531	-372.540	26.004	0.039
J/Ψ	${ m Re}E$	$\delta \mathrm{Re}E$	$E_{\rm bind}$	$\mathrm{Im}E$	$\delta \mathrm{Im}E$
J/Ψ T_o	Re <i>E</i> 439.336	$\delta \text{Re}E$ 1.230	$\frac{E_{\text{bind}}}{-406.202}$	Im <i>E</i> 41.980	$\delta \text{Im}E$ 0.107
$\frac{J/\Psi}{T_o}\\1.1T_o$	Re <i>E</i> 439.336 422.207	$\frac{\delta \mathrm{Re}E}{1.230}$ 1.163	E_{bind} -406.202 -323.362	${\rm Im}E$ 41.980 51.467	$\frac{\delta \text{Im}E}{0.107}$ 0.105
$\begin{array}{c} J/\Psi \\ T_o \\ 1.1T_o \\ 1.2T_o \end{array}$	ReE 439.336 422.207 404.597	$\delta { m Re} E$ 1.230 1.163 1.095	$ E_{bind} \\ -406.202 \\ -323.362 \\ -255.648 $	ImE 41.980 51.467 61.698	$\delta { m Im} E$ 0.107 0.105 0.098
$J/\Psi \ T_o \ 1.1 T_o \ 1.2 T_o \ 1.3 T_o$	ReE 439.336 422.207 404.597 386.604	$\delta \text{Re}E$ 1.230 1.163 1.095 1.028	$ E_{bind} \\ -406.202 \\ -323.362 \\ -255.648 \\ -199.583 $	ImE 41.980 51.467 61.698 72.564	$\frac{\delta \text{Im}E}{0.107} \\ 0.105 \\ 0.098 \\ 0.086$

The exact results of the complex eigenenergies (E) and binding energies (E_{bind}) for different quarkonium states at various temperatures with $\xi = 1$. Comparing with the results obtained based on the 1D potential model with effective screening masses, the corresponding differences as denoted by δE are also listed. The reference temperature T_o is 192 MeV and all the results are given in the units of MeV.

Ajaharul Islam, Kent State U

Dynamic Results: Bottomonium

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

Dynamic Results: Charmonium

L. Dong, Y. Gua, A. Islam, A. Rothkopf, and M. Strickland : arXiv 2205.10349, May 20, 2022

Ajaharul Islam, Kent State U

Summary

- We demonstrate that, using the resulting 1D effective potential model, one can solve a 1D Schrödinger equation and reproduce the full 3D results for the energies and binding energies of low-lying heavy-quarkonium bound states to relatively high accuracy.
- The 1D effective isotropic potential is much easier to solve as compared to the 3D anisotropic potential.
- The resulting 1D effective isotropic potential model includes the splitting of different p-wave polarizations.

Future Directions

- To extend the model for large anisotropic parameter (ξ)
- Phenomenological studies
- The resulting 1D effective isotropic potential model could provide an efficient method for including momentum anisotropy effects in open quantum system simulations of heavy-quarkonium dynamics in the quark gluon plasma.

N. Brambilla, M. Escobedo, A. Islam, M. Strickland, A. Tiwari, A. Vairo, and P. Vander Griend : arXiv 2205.10289, May 20, 2022

Ajaharul Islam, Kent State U