

Triangle Singularity in the Production of $T_{cc}^+(3875)$ and a soft Pion [arXiv: 2202.03900]

Liping He

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics **Universität Bonn**

collaborators: Eric Braaten & Kevin Ingles (Ohio State U.), Jun Jiang (Shandong U.)

- Brief review of $T_{cc}^+(3875)$
- Loosely bound charm-meson molecule
- Production of T_{cc}^+ and a soft pion at a hadron collider
 - charm-meson triangle singularity
 - cross sections in coupled-channel model
 - contribution from triangle singularity
- **Summary and outlook**

Outline

$T_{cc}^{+}(3875)$

many theoretical studies in the literature [more than 100 citations for the LHCb papers]

See "An updated review of the new hadron states": Chen *at al.*, arXiv: 2204.02649

$T_{cc}^{+}(3875)$

S-wave loosely bound charm-meson molecule!!

- $T_{cc}^+ = D^{*+}D^0$ dominant component
- at short distance

 $M[D^{*0}D^+] - M[D^{*+}D^0] = 1.4$ MeV, there is $D^{*0}D^+$ component with small probability isospin = 0: $(D^{*+}D^0 - D^{*0}D^+)/\sqrt{2}$

other possible components of wave functions: compact tetraquark $cc\bar{q}\bar{q}$, $\bar{q}\bar{q}$ bound to heavy diquark (*cc*)

Universal properties determined by the binding energy |ε_T|

* large scattering length: $|\mathbf{a}| = 1/\sqrt{2\mu} |\varepsilon_T| = 1/\gamma$, $|\mathbf{a}| >> R = 1/m_{\pi}$ * large mean separation: $\langle \mathbf{r} \rangle = a/2$, $|\varepsilon_T| = 360 \pm 40$ keV implies $\langle \mathbf{r} \rangle = 3.7 \pm 0.2$ fm * scattering amplitude at $E \ll 1/(2\mu R^2)$: $f(E) = 1/(-1/a + i\sqrt{2\mu E})$

loosely bound charm-meson molecule

S-wave loosely bound charm-meson molecule!!

- $T_{cc}^+ = D^{*+}D^0$ dominant component

Galilean-invariant XEFT

Braaten [PRD 91, 114007(2015)] Braaten, He & Jiang [PRD 103, 036014(2021)]

loosely bound charm-meson molecule

universal wave function

momentum-space wave function:

wave function at origin: $\psi(r = 0) =$

unphysical results for some observables

model wave function

momentum-space wave function (more physical qualitative behavior at large k): $\psi^{(\Lambda)}(k) = \frac{\sqrt{8\pi(\Lambda + \gamma)\Lambda\gamma}}{\Lambda - \gamma} \left(\frac{1}{k^2 + \gamma^2} - \frac{1}{k^2 + \Lambda^2}\right)$ wave function at origin: $\psi^{(\Lambda)}(r=0) = \sqrt{(\Lambda + \gamma)\Lambda\gamma/2\pi}$

$$\psi(k) = \frac{\sqrt{8\pi\gamma}}{k^2 + \gamma^2}$$
$$= \int \frac{d^3k}{(2\pi)^3} \psi(k) = +\infty$$

loosely bound charm-meson molecule

distances): $\psi_{0+}^{(\Lambda)} = \psi^{(\Lambda)}(r=0)$

Production of T_{cc}^+ and a soft pion

charm-meson triangle singularity

A triangle singularity: three charm mesons can be on shell simultaneously

 $\blacksquare \frac{\log^2(E/E_{\Delta}) \text{ divergence in reaction rate at}}{E_{\Delta} = (M_T/2M_D)E_+ = 6.1 \text{ MeV}}$

✓ square-root branch point at $E = E_+$

• cusp at $E = E_+$

$$E_{+} = M_{D^{*+}} - M_{D^{0}} - m_{\pi^{0}} = 5.9 \text{ MeV}$$

charm-meson triangle singularity

coupled-channel model

differential cross sections $d\sigma/dE$ for $T_{cc}^+\pi$

- ***** $T_{cc}^+\pi^-$: no triangle singularity peak
- * $T_{cc}^+\pi^+(\pi^0)$: same shape as those with the universal triangle amplitudes
- ***** $T_{cc}^+\pi^-$ approaches $T_{cc}^+\pi^+$ at large energy
- * At large energy, $d\sigma/dE \propto E^{-1/2}$

coupled-channel model

difference between $d\sigma/dE$ for $T_{cc}^+\pi^+$ and $T_{cc}^+\pi^$ near triangle-singularity peak

$$\sigma \left[T_{cc}^{+} \pi^{+} \right] - \sigma \left[T_{cc}^{+} \pi^{-} \right] \approx \left(1.3_{-0.8}^{+1.5} \right) \times 10^{-2} \sigma^{(\Lambda)} \left[T_{cc}^{+} \right]$$

- independent of E_{max}
- dominated by the triangle-singularity peak
- $T_{cc}^+\pi^-$ can be used to measure background

contribution from triangle singularity

subtraction of $T_{cc}^+\pi^-$ subtracts the background for $T_{cc}^+\pi^+$ but keeps the peak from the triangle singularity.

fraction of $T_{cc}^+\pi^+$ events with $T_{cc}^+\pi^+$ in the peak from triangle singularity: 1.2% a small fraction of events are from triangle singularity, but all within 1 MeV of the peak

LHCb observed 117 ± 16 events

more statistics to observe the triangle-singularity peak

Summary and Outlook

- $d\sigma/dE$ for $T_{cc}^+ + \pi^+$ increases as $E^{3/2}$ for compact tetraquark

Production of T_{cc}^+ at a hadron collider

production mechanism of T_{cc}^+

- * creation of **D***+**D**⁰ at short distances
- * rescattering of virtual $D^{*+}D^{0}$ into T_{cc}^{+}

production of **D***+**D**⁰ at short distances

- * single-parton scattering (SPS)
- double-parton scattering (DPS) *

• two charm mesons are created at shorter distance from SPS than DPS • increased yield for T_{cc}^+ at larger Ntracks may arise from the DPS mechanism a larger fraction is produced by the SPS mechanism by the restriction Ntracks <80</p>

Multiplicity dependence

contribution from triangle singularity

 $\sigma \left| \left(T_{cc}^+ \pi^+ \right)_{\Lambda} \right| \approx (8.6 \pm 0.5) \times 10^{-3} \sigma \left[T_{cc}^+, \text{no } \pi \right]$ $\sigma\left[\left(T_{cc}^{+}\pi^{0}\right)_{\Lambda}\right]\approx\left(4.8\pm0.2\right)\times10^{-3}\sigma\left[T_{cc}^{+},\text{no }\pi\right]$

cross section at large energy increases as $E^{1/2}$ → there is a local minimum near 17 MeV

unphysical behavior: artifact of using the universal approximation for T_{cc}^+ beyond its range of applicability

 $\mathbf{V} \propto \mathbf{A}$ few of the T_{cc}^+ events observed by the LHCb should be from $T_{cc}^+ + \pi^+$ with $E_{max} < m_{\pi}$

model for background: interpolating between $E^{3/2}$ at small *E* and a constant at the local minimum

