Liping He

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics Universität Bonn
collaborators: Eric Braaten \& Kevin Ingles (Ohio State U.), Jun Jiang (Shandong U.)

Outline

- Brief review of $T_{c c}^{+}(3875)$
- Loosely bound charm-meson molecule
- Production of $T_{c c}^{+}$and a soft pion at a hadron collider
+ charm-meson triangle singularity
+ cross sections in coupled-channel model
+ contribution from triangle singularity
- Summary and outlook

$T_{c c}^{+}(3875)$

discovery by LHCb [arXiv:2109.01038, arXiv:2109.01056]

$p p \rightarrow$ anything

many theoretical studies in the literature [more than 100 citations for the LHCb papers]

- quark contents: $c c \bar{u} \bar{d}$
- quantum numbers:

$$
I\left(J^{P}\right)=0\left(1^{+}\right)
$$

- mass (Breit-Wigner):

$$
\varepsilon_{\mathrm{T}}=\mathrm{M}_{\mathrm{T}}-\left(\mathrm{M}_{\mathrm{D}^{*}+}+\mathrm{M}_{\mathrm{D} 0}\right)=(-273 \pm 63) \mathrm{keV}
$$

- mass (pole energy) [$\mathrm{D}^{*+} \mathrm{D}^{0}$ threshold effect]:

$$
\varepsilon_{\mathrm{T}}=\mathrm{M}_{\mathrm{T}}-\left(\mathrm{M}_{\mathrm{D}^{*+}}+\mathrm{M}_{\mathrm{D} 0}\right)=(-360 \pm 40) \mathrm{keV}
$$

- width:

$$
\Gamma_{\mathrm{BW}}=410 \mathrm{keV}, \Gamma_{\text {pole }}=48 \mathbf{k e V}
$$

- decay modes: $\mathbf{D}^{+} \mathbf{D}^{0} \pi^{0}, \mathbf{D}^{0} \mathbf{D}^{0} \pi^{+}, \mathbf{D}^{+} \mathbf{D}^{0} \gamma$

Chen at al., arXiv: 2204.02649

$T_{c c}^{+}(3875)$

What is the $T_{c c}^{+}(3875)$?

$\mathbf{J P}^{\mathrm{P}}=\mathbf{1}^{+} \rightarrow$ S-wave coupling to $\mathrm{D}^{*+} \mathbf{D}^{0}$
$\left|\varepsilon_{T}\right|=0.36 \pm 0.04 \mathrm{keV} \rightarrow$ resonant coupling

$\mathbf{J P C}^{\mathbf{P C}} \mathbf{1}^{++} \rightarrow$ S-wave coupling to $\mathbf{D}^{*} 0 \overline{\mathbf{D}}^{0} / \overline{\mathbf{D}}^{*} 0 \mathbf{D}^{0}$
$\left|\mathbf{E}_{\mathbf{X}}\right|<\mathbf{0 . 2 2} \mathbf{M e V} \rightarrow$ resonant coupling

S-wave loosely bound charm-meson molecule!!

$$
T_{c c}^{+}=D^{*+} D^{0} \quad \text { dominant component }
$$

at short distance

${ }^{\circ} M\left[D^{* 0} D^{+}\right]-M\left[D^{*+} D^{0}\right]=1.4 \mathrm{MeV}$, there is $D^{* 0} D^{+}$ component with small probability
isospin =0: $\left(D^{*+} D^{0}-D^{* 0} D^{+}\right) / \sqrt{2}$
other possible components of wave functions:
compact tetraquark $c c \bar{q} \bar{q}$,
$\bar{q} \bar{q}$ bound to heavy diquark ($c c$)

loosely bound charm-meson molecule

What is the $T_{c c}^{+}(3875)$?
$\mathrm{JP}^{\mathbf{P}}=\mathbf{1}^{+} \rightarrow$ S-wave coupling to $\mathrm{D}^{+} \mathrm{D}^{0}$
$\left|\varepsilon_{\mathbf{T}}\right|=0.36 \pm 0.04 \mathrm{keV} \rightarrow$ resonant coupling

S-wave loosely bound charm-meson molecule!!

$$
T_{c c}^{+}=D^{*+} D^{0} \quad \text { dominant component }
$$

Universal properties determined by the binding energy $\left|\varepsilon_{T}\right|$

* large scattering length: $|\mathrm{a}|=1 / \sqrt{2 \mu\left|\varepsilon_{T}\right|}=1 / \gamma,|\mathrm{a}| \gg R=1 / m_{\pi}$
* large mean separation: $\langle r\rangle=a / 2, \quad\left|\varepsilon_{T}\right|=360 \pm 40 \mathrm{keV}$ implies $\langle r\rangle=3.7 \pm 0.2 \mathrm{fm}$ * scattering amplitude at $E \ll 1 /\left(2 \mu R^{2}\right): f(E)=1 /(-1 / a+i \sqrt{2 \mu E})$

XEFT effective field theory for charm mesons and pions
Fleming, Kusunoki, Mehen \& van Kolck [PRD 76, 034006(2007)]

Galilean-invariant XEFT

Braaten [PRD 91, 114007(2015)]
Braaten, He \& Jiang [PRD 103, 036014(2021)]

loosely bound charm-meson molecule

universal wave function

momentum-space wave function: $\psi(k)=\frac{\sqrt{8 \pi \gamma}}{k^{2}+\gamma^{2}}$
wave function at origin: $\psi(r=0)=\int \frac{d^{3} k}{(2 \pi)^{3}} \psi(k)=+\infty$ unphysical results for some observables

model wave function

- momentum-space wave function (more physical qualitative behavior at large \mathbf{k}):

$$
\psi^{(\Lambda)}(k)=\frac{\sqrt{8 \pi(\Lambda+\gamma) \Lambda \gamma}}{\Lambda-\gamma}\left(\frac{1}{k^{2}+\gamma^{2}}-\frac{1}{k^{2}+\Lambda^{2}}\right)
$$

- wave function at origin: $\psi^{(\Lambda)}(r=0)=\sqrt{(\Lambda+\gamma) \Lambda \gamma / 2 \pi}$

loosely bound charm-meson molecule

including $D^{* 0} D^{+}$component at short distance with binding momentum $\gamma_{0+}=\sqrt{2 \mu\left(\delta+\left|\varepsilon_{T}\right|\right)}$

model wave function for $D^{* 0} D^{+}$channel

momentum-space wave function: $\psi_{0+}^{(\Lambda)}(k)=\frac{\sqrt{8 \pi(\Lambda+\gamma) \Lambda \gamma}}{\Lambda-\gamma_{0+}}\left(\frac{1}{k^{2}+\gamma_{0+}^{2}}-\frac{1}{k^{2}+\Lambda^{2}}\right)$
wave function at origin (determined by symmetry between the two channels at short distances): $\psi_{0+}^{(\Lambda)}=\psi^{(\Lambda)}(r=0)$
relative probability for the $D^{* 0} D^{+}$channel: $Z_{0+}=\frac{(\Lambda+\gamma) \gamma}{\left(\Lambda+\gamma_{0+}\right) \gamma_{0+}}<1$

amplitude in XEFT for the coupled-channel model

$$
\frac{1}{k^{2}+\gamma^{2}} \rightarrow \frac{1}{\sqrt{1+Z_{0+}}} \frac{\psi^{(\Lambda)}(k)}{\sqrt{8 \pi \gamma}}, \quad \frac{1}{k^{2}+\gamma_{0+}^{2}} \rightarrow-\frac{1}{\sqrt{1+Z_{0+}}} \frac{\psi_{0+}^{(\Lambda)}(k)}{\sqrt{8 \pi \gamma}}
$$

Production of $T_{c c}^{+}$and a soft pion

charm-meson triangle singularity

Δ triangle singularity:
three charm mesons can be on shell simultaneously
$\rightarrow \log ^{2}\left(E / E_{\Delta}\right)$ divergence in reaction rate at $E_{\Delta}=\left(M_{T} / 2 M_{D}\right) E_{+}=6.1 \mathrm{MeV}$
$\sqrt{ }$ square-root branch point at $E=E_{+}$
\rightarrow cusp at $E=E_{+}$

$$
E_{+}=M_{D^{*+}}-M_{D^{0}}-m_{\pi^{0}}=5.9 \mathrm{MeV}
$$

charm-meson triangle singularity

Δ triangle singularity:

$\log ^{2}\left(E / E_{\Delta}^{\prime}\right)$ divergence in do/dE at complex E_{Δ}^{\prime}
narrow peak in reaction rate
$\sqrt{\sqrt{s} \text { square-root branch point at } E=E_{+}^{\prime} \text { (complex) }}$
The shape of $d \sigma / d E$ near the peak is determined by the interplay between the logarithmic singularity and the
 square-root singularity in the triangle amplitude.

coupled-channel model

coupled-channel model

difference between $d \sigma / d E$ for $T_{c c}^{+} \pi^{+}$and $T_{c c}^{+} \pi^{-}$ near triangle-singularity peak

difference between $\sigma\left[T_{c c}^{+} \pi\right]$ for $T_{c c}^{+} \pi^{+}$and $T_{c c}^{+} \pi^{-}$
$\sigma\left[T_{c c}^{+} \pi^{+}\right]-\sigma\left[T_{c c}^{+} \pi^{-}\right] \approx\left(1.3_{-0.8}^{+1.5}\right) \times 10^{-2} \sigma^{(\Lambda)}\left[T_{c c}^{+}, \mathrm{no} \pi\right]$

- independent of $\mathbf{E}_{\text {max }}$
- dominated by the triangle-singularity peak
- $T_{c c}^{+} \pi^{-}$can be used to measure background

contribution from triangle singularity

subtraction of $T_{c c}^{+} \pi^{-}$subtracts the background for $T_{c c}^{+} \pi^{+}$ but keeps the peak from the triangle singularity.
fraction of $T_{c c}^{+} \pi^{+}$events with $T_{c c}^{+} \pi^{+}$in the peak from triangle singularity: 1.2\%
a small fraction of events are from triangle singularity, but all within 1 MeV of the peak

$$
\text { LHCb observed } 117 \pm 16 \text { events }
$$

more statistics to observe the triangle-singularity peak

Summary and Outlook

V charm-meson triangle singularities
produce narrow peaks in $T_{c c}^{+} \pi$ invariant mass near $\boldsymbol{D}^{*} \boldsymbol{D}^{*}$ threshold smoking gun for $T_{c c}^{+}$as charm-meson molecule !! compact tetraquark would have suppressed coupling to $D^{*+} D^{0}$
■ At higher energy, $d \sigma / d E$ for $T_{c c}^{+}+\pi^{+}$decreases as $E^{-1 / 2}$ for molecule $d \sigma / d E$ for $T_{c c}^{+}+\pi^{+}$increases as $E^{3 / 2}$ for compact tetraquark
Background of $T_{c c}^{+}+\pi^{+}$can be determined experimentally by measuring $T_{c c}^{+} \pi^{-}$events - A small fraction of events are from triangle singularity, but within 1 MeV of the peak

Backup

Production of $T_{c c}^{+}$at a hadron collider

production mechanism of $T_{c c}^{+}$
 $c c$

* creation of $\mathrm{D}^{*+} \mathrm{D}^{0}$ at short distances
* rescattering of virtual $\mathrm{D}^{*+} \mathbf{D}^{0}$ into $T_{c c}^{+}$

production of $\mathrm{D}^{*+} \mathrm{D}^{0}$ at short distances

* single-parton scattering (SPS)
* double-parton scattering (DPS)

Multiplicity dependence

two charm mesons are created at shorter distance from SPS than DPS increased yield for $T_{c c}^{+}$at larger Ntracks may arise from the DPS mechanism - a larger fraction is produced by the SPS mechanism by the restriction Ntracks <80

contribution from triangle singularity

$$
\begin{aligned}
& \sigma\left[\left(T_{c c}^{+} \pi^{+}\right)_{\Delta}\right] \approx(8.6 \pm 0.5) \times 10^{-3} \sigma\left[T_{c c}^{+}, \text {no } \pi\right] \\
& \sigma\left[\left(T_{c c}^{+} \pi^{0}\right)_{\Delta}\right] \approx(4.8 \pm 0.2) \times 10^{-3} \sigma\left[T_{c c}^{+}, \text {no } \pi\right]
\end{aligned}
$$

cross section at large energy increases as $E^{1 / 2}$ \rightarrow there is a local minimum near 17 MeV
unphysical behavior: artifact of using the universal approximation for $T_{c c}^{+}$beyond its range of applicability
model for background: interpolating between $E^{3 / 2}$ at small E and a constant at the local minimum

\square A few of the $T_{c c}^{+}$events observed by the LHCb should be from $T_{c c}^{+}+\pi^{+}$with $E_{\text {max }}<m_{\pi}$

