Charm mass effects in the static energy computed in 2 + 1 + 1 flavor lattice QCD

Viljami Leino

For the TUMQCD collaboration In collaboration with: N. Brambilla, R. L. Delgado, A. S. Kronfeld, P. Petreczky, S. Steinbeißer, A. Vairo and J. H. Weber

Based on: hep-lat:2206.03156

Confinement 2022 1st of August 2022 Stavanger, Norway

Static energy

- The QCD static energy of a quark-antiquark pair is a physical observable both in continuum and on the lattice
- Calculated on the lattice with high precision up to 2+1+1 flavors
- Perturbatively known up to N³LL accuracy
- Can be used to set the scale, extract strong coupling constant $\alpha_{\rm s}$

Static energy in perturbation theory

• Perturbatively known to $\rm N^3LL\ ^1:$

$$E_0(r) = \Lambda_{\rm s} - \frac{C_{\rm F}\alpha_{\rm s}}{r} \left(1 + \#\alpha_{\rm s} + \#\alpha_{\rm s}^2 + \#\alpha_{\rm s}^3 + \#\alpha_{\rm s}^3 \ln \alpha_{\rm s} + \#\alpha_{\rm s}^4 \ln^2 \alpha_{\rm s} + \#\alpha_{\rm s}^4 \ln \alpha_{\rm s} \dots\right)$$

• Determined from the large-time behavior of Wilson loops $F(r) = -\lim_{t \to \infty} \frac{\ln \langle \operatorname{Tr}(W_{r \times T}) \rangle}{W_{r \times T} - P} \begin{cases} \exp\left(i \oint_{t} dz gA\right) \end{cases}$

$$E(r) = -\lim_{T \to \infty} \frac{\ln \langle \operatorname{Ir}(W_{r \times T}) \rangle}{T}, \qquad W_{r \times T} = P \Big\{ \exp \left(i \oint_{r \times T} dz_{\mu} g A_{\mu} \right) \Big\}$$

- Can be calculated nonperturbatively on the lattice
- Set scale as $\mu=1/r$, other scales (e.g. ultrasoft $\sim lpha_{
 m s}/r$) also involved
- In the dimensional regularization requires a renormalon subtraction
- In the lattice regularization diverges as 1/a towards continuum limit
- Both regularization problems can be absorbed into a constant term
- Alternatively, consider the static force $F(r) = \partial_r E_0(r)$
- ¹ For review of perturbative results, see: X. Tormo Mod. Phys. Lett. A28 (2013)

• Effects due to finite mass of a heavy quark gives correction $\delta V_{\rm m}^{(N_{\rm f})}(r)$

Lattice simulations

our naming β 5.80 M i	$N_{\sigma}^3 imes N_{ au}$ $32^3 imes 48$	β 5.80	a _{fp4s} (fm) 0.15294	и ₀ 0.85535	<i>ат</i> І 0.00235	<i>am</i> s 0.0647	<i>ат</i> с 0.831	m _l /m _s phys	(<i>am</i> s) _{tuned} 0.06852	<i>M</i> _π (MeV) 131	#conf. 1041
β 6.00 M ii β 6.00 M i	$\begin{array}{c} 32^3 \times 64 \\ 48^3 \times 64 \end{array}$	6.00	0.12224	0.86372	0.00507 0.00184	0.0507	0.628	1/10 phys	0.05296	217 132	1000 709
β 6.30 M iii β 6.30 M ii β 6.30 M ii β 6.30 M i	$\begin{array}{c} 32^3\times 96\\ 48^3\times 96\\ 64^3\times 96\end{array}$	6.30	0.08786	0.874164	0.0074 0.00363 0.0012	0.037 0.0363	0.44 0.43 0.432	1/5 1/10 phys	0.03627	316 221 129	1008 1031 1074
β 6.72 M iii β 6.72 M ii β 6.72 M ii β 6.72 M i	$\begin{array}{c} 48^3 \times 144 \\ 64^3 \times 144 \\ 96^3 \times 192 \end{array}$	6.72	0.05662	0.885773	0.0048 0.0024 0.0008	0.024 0.022	0.286 0.26	1/5 1/10 phys	0.02176	329 234 135	1017 1103 1268
β 7.00 M iii β 7.00 M i	$\begin{array}{c} 64^3 \times 192 \\ 144^3 \times 288 \end{array}$	7.00	0.0426	0.892186	0.00316 0.000569	0.0158 0.01555	0.188 0.1827	1/5 phys	0.01564	315 134	1165 478
β 7.28 M iii	$96^3 imes 288$	7.28	0.03216	0.89779	0.00223	0.01115	0.1316	1/5	0.01129	309	821

- Measure static energy as the ground state of the Wilson line correlation function in Coulomb gauge
- Use state of the art 2+1+1 HISQ¹ ensembles from MILC²
- Three different light quark masses, physical strange and sea
- Six lattice spacings via f_{p4s} scale

¹E. Follana, et.al., PRD75 (200/); ² A. Bazavov, et.al., PRD98 7 (2018)

Static energy on the lattice

• E_0 as correlation of Wilson lines $W(r, \tau, a) = \prod_{u=0}^{\tau/a-1} U_4(r, ua, a)$

$$C(\mathbf{r},\tau,\mathbf{a}) = \left\langle \frac{1}{N_{\sigma}^{3}} \sum_{x} \sum_{y=R(r)} \frac{1}{N_{c}N_{r}} \operatorname{Tr} W^{\dagger}(x+y,\tau,\mathbf{a}) W(x,\tau,\mathbf{a}) \right\rangle$$
$$C(\mathbf{r},\tau,\mathbf{a}) = e^{-\tau E_{0}(\mathbf{r},\mathbf{a})} \left(C_{0}(\mathbf{r},\mathbf{a}) + \sum_{n=1}^{N_{st}-1} C_{n}(\mathbf{r},\mathbf{a}) \prod_{m=1}^{n} e^{-\tau \Delta_{m}(\mathbf{r},\mathbf{a})} \right) + \cdots$$

• Vary the fit range with $N_{\rm st}$ and $|{\bf r}|$, Bayesian fits:

$$\begin{split} |\mathbf{r}| + 0.2 \text{ fm} &\leq \tau_{\min,1} \leq 0.3 \text{ fm} & \text{for } N_{\mathrm{st}} = 1, \Rightarrow \text{ prior values} \\ \frac{2}{3}|\mathbf{r}| + 0.1 \text{ fm} &\leq \tau_{\min,2} \leq \tau_{\min,1} - 2a & \text{for } N_{\mathrm{st}} = 2, \Rightarrow \text{ Our pick} \\ \frac{1}{3}|\mathbf{r}| &\leq \tau_{\min,3} \leq \tau_{\min,2} - 2a & \text{for } N_{\mathrm{st}} = 3, \Rightarrow \text{ cross-check} \end{split}$$

- Prior for $E_1 E_0$ from²
- Measurements with and without one step of HYP-smearing¹
- Use tree-level improvement for the distance r to correct for artifacts Extension to 1-loop ongoing: G. v. Hippel, et.al., in preparation: TUM-EFT 171/22
- ¹ A. Hasenfratz, et.al., PRD64 (2001); ² K. Juge, et.al., PRL90 (2003)

Charm quark mass effects on the lattice

- Clearly visible difference between the behaviors of $2+1^1$ and 2+1+1
- Curve with charm effects follows the data better than curves without
- Use $\Lambda_{\rm \overline{MS}}$ that fits the data well, $r0\Lambda_{\rm \overline{MS}}$ compatible with previous determinations

¹ A. Bazavov, et.al., PRD100 (2019)

Lattice scales and the string tension

• Static energy allows determination of lattice scales r_i and the string tension σ

$$r_i^2 F(r_i) = \begin{cases} 1.65, & i = 0^1 \\ 1.0, & i = 1^2 \\ 0.5, & i = 2^3 \end{cases}, r_1 \sim 0.3106 \,\mathrm{fm} \\ r_2 \sim 0.145 \,\mathrm{fm} \end{cases}$$

- $r_2 \sim 1/m_c$, scales r_i expected to be affected by charm differently
- Locally fit the data using Cornell ansatz

$$E(R,a) = -\frac{A}{R} + B + \sigma R$$

Asymmetric random picking for systematics

¹ R. Sommer, NPB411 (1994); ² C. Bernard, et.al., PRD62 (2000); ³ A. Bazavov, et.al., PRD97 (2018)

Continuum limit

- Smooth the data with Allton ansatz
- Leading discretization effects $\alpha_{\rm s}^2 {\it a}^2$ and ${\it a}^4$
- Lattice spacing dependence: $x = (a/r_{0,1})^2$
- Light quark mass dependence: $y = (am_l)/(am_s)$

$$\xi = \xi_0 + \alpha^2 [\xi_1 x + \xi_2 x y^{(1,2)}] + \xi_3 x^2 + \xi_4 y \,, \quad (\mathsf{I},\mathsf{q};\mathsf{I},\mathsf{q}\mathsf{m};\mathsf{m}\mathsf{c})$$

• Where
$$\alpha = 1$$
 or $\alpha = g_0^2/(4\pi u_0^2)$

Extrapolation of individual scales

Extrapolation of ratios of scales

Final numbers and comparison to literature

Grey bands from 2+1: M. Cheng, et.al., PRD77 (2008)

Final numbers and comparison to literature

- We have computed the static energy $E_0(r)$ with 2+1+1 flavors
- Determine scales r_0 , r_1 , and r_2 , their ratios, and string tension σ
- Can determine all these scales simultaneously
- We can see charm decoupling well in the data
 - Perturbative charm effects give better description of the data
 - Scales closer to inverse charm mass differ more from their 2+1 flavor counterparts
- Future prospects: Measure $\Lambda_{\overline{\rm MS}}$

- We have computed the static energy $E_0(r)$ with 2+1+1 flavors
- Determine scales r_0 , r_1 , and r_2 , their ratios, and string tension σ
- Can determine all these scales simultaneously
- We can see charm decoupling well in the data
 - Perturbative charm effects give better description of the data
 - Scales closer to inverse charm mass differ more from their 2+1 flavor counterparts
- Future prospects: Measure $\Lambda_{\overline{\rm MS}}$

Thank you for your attention!