Femtoscopy of the J/ψ -nucleon interaction

Gastão Krein

Instituto de Física Teórica, São Paulo

XVth Quark Confinement and the Hadron Spectrum Stavanger - August 05, 2022

Outline

- 1. Motivation: trace anomaly, proton mass
- 2. Heavy quarkonium-nucleon scattering
- 3. J/ψ -nucleon @ LHC Femtoscopy
- 4. Predictions for $J/\psi-$ nucleon femtoscopy
- 5. Conclusions & Perspectives

Work with T. C. Peixoto

1. Quarkonium-nucleon scattering

Access to trace anomaly matrix element: $\langle N | (gE^a)^2 | N \rangle$ (small QN relative momentum)

Trace anomaly - Nucleon mass

 $\beta(g) \simeq -b \frac{g^3}{16\pi^2}, \quad b = 11 - \frac{2n_l}{3}$ (heavy quarks integrated out)

Experimental access to $\langle N | G^a_{\mu u} G^{a\mu u} | N angle$?

Inequality (almost saturated, chromomagnetic part suppressed)*:

$$-\frac{1}{2}\langle N|g^2 G^a_{\mu\nu}(x)G^{a\mu\nu}(x)|N\rangle = \langle N|\left[(g\boldsymbol{E}^a)^2 - (g\boldsymbol{B}^a)^2\right]|N\rangle \leqslant \langle N|(g\boldsymbol{E}^a)^2|N\rangle$$

Shifman, Vainshtein & Zakharov (1978) *Sibirtsev & Voloshin (2005) 2. Heavy quarkonium - nucleon (QN)

Low QN momentum interaction

- Heavy quarkonium: small object, radius r_Q
- Interacts by exchanging gluons with nucleon's light quarks
- Low relative momentum, gluon wavelength $\lambda_g \sim r_N$ (nucleon radius)
- $r_Q \ll r_N$: quarkonium small dipole in soft gluon fields
- QCD multipole expansion (\sim OPE)

Peskin (1978), Bhanot & Peskin (1978), Voloshin (1979), Novikov & Shifman (1981), Kaidalov & Volkovitsky (1992), Luke, Manohar & Savage (1992)

QN scattering amplitude

QCD multipole expansion

$$\begin{split} f_{QN}(\boldsymbol{p},\boldsymbol{p}') &= \frac{\mu_{QN}}{2\pi} \frac{1}{2} \left[\frac{2T_F}{3N_c} \langle \varphi_Q | \boldsymbol{r} \frac{1}{E_b + H_{\text{octet}}} \boldsymbol{r} | \varphi_Q \rangle \right] \langle N(\boldsymbol{p}) | (g\boldsymbol{E}^a)^2 | N(\boldsymbol{p}) \rangle \\ &= \frac{\mu_{QN}}{2\pi} \frac{1}{2} \alpha_Q \langle N(\boldsymbol{p}) | (g\boldsymbol{E}^a)^2 | N(\boldsymbol{p}) \rangle \end{split}$$

- μ_{QN} reduced mass, $oldsymbol{p},oldsymbol{p}'$ relative c.m. momenta
- α_Q quarkonium color polarizability
- $T_F = 1/2$, $N_c = 3$
- Note that: forward (p' = p) amplitude enters here

Kaidalov & Volkovitsky (1992), Kharzeev (1996), Sibirtseev & Voloshin (2005)

Experimental access to $\langle N | (gE^a)^2 | N \rangle$ —Will focus on $Q = J/\psi$

Lattice QCD simulations and models point toward a weakly attractive, <u>S-wave dominated</u> $J/\psi N$ interaction

 $\left\| \right.$ small relative $J/\psi\,N$ momenta: $f_{\rm forw.}\simeq -a_{J/\psi N}$

$$a_{J/\psi N} = -rac{\mu_{J/\psi N}}{2\pi} rac{1}{2} lpha_{J/\psi} \langle N | (g oldsymbol{E}^a)^2 | N
angle$$

Need to measure $a_{J/\psi N}$ (But to obtain $\langle N | (gE^a)^2 | N \rangle$ need to know $\alpha_{J/\psi}$)

Electro- and photoproduction @ JLab, EIC, EicC

Analyses of recent Glue-X experiment*

Extracted very small values of scattering length
 0.003 fm ≤ |a_{J/ψN}| ≤ 0.025 fm
 100 times smaller than some of earlier theoretical estimates

– Issues:

No forward scattering, $t_{\rm thr.} \simeq 1.5~{\rm GeV}^2$ Vector meson dominance problematic, not enough time for J/ψ to be formed

* I.I. Strakovsky, D. Epifanov, and L. Pentchev, PRD 101, 042201 (2020) L. Pentchev and I.I. Strakovsky, Eur. Phys. J. A 57, 56 (2021)

3. J/ψ -nucleon @ LHC - Femtoscopy

Production yields and leptonic decay rates relatively high Knowledge from lattice QCD and phenomenological models

Lattice:

- $~J/\psi N$ interaction: attractive, not very strong
- Used quenched confs. or large quark masses, need extrapolation to physical masses
- Extrapolation: use effective field theory (EFT) QNEFT*
- QNEFT degrees of freedom: $J/\psi, N = (p, n), \pi$

Models:

- Phenomenological spherical well, simple but insightful
- QCD multipole expansion + chiral soliton model (χ CSQM)

*J. Tarrús Castellà & GK, Phys. Rev. D 98, 014029 (2018)

Femtoscopy: basics

Figure from: Unveiling the strong interaction among hadrons at the LHC ALICE Coll., Nature 588, 232 (2020)

Momentum correlation function

Experimental extraction

- p_1, p_2 : measured hadron momenta m_1, m_2 : hadron masses

 $P = p_1 + p_2, \ k = rac{m_2 p_1 - m_1 p_2}{m_1 + m_2}$: c.m. and relative momenta

— Pair's c.m. frame: $P = 0 \rightarrow p_1 = -p_2 \Rightarrow k = p_1 = -p_2$

 $C(k) = \frac{A(k)}{B(k)} \begin{cases} A(k) : \text{ yield from same event (coincidence yield)} \\ B(k) : \text{ yield from different events (background)} \end{cases}$

— Corrections: nonfemtoscopic correlations, momentum resolution, etc $\leftarrow \xi(k)$

$$C(k) = \xi(k) \frac{A(k)}{B(k)}$$

Correlation function

Theoretical interpretation

— Koonin-Pratt formula

$$C(k) = \xi(k) \frac{A(k)}{B(k)} = \int d^3 r \, S_{12}(\boldsymbol{r}) \, |\psi(\boldsymbol{k}, \boldsymbol{r})|^2$$

 $S_{12}(r)$: source, pair's relative distance distribution function (in pair's frame) $\psi(k,r)$: pair's relative wave function

- One needs here $\psi({m k},{m r})$ for $0\leqslant r\leqslant\infty$, not asymptotic as in scattering
- $\psi({m k},{m r})$: properties of the interaction

Femtoscopy of the KN interaction

PHYSICAL REVIEW LETTERS 124, 092301 (2020)

Scattering Studies with Low-Energy Kaon-Proton Femtoscopy in Proton-Proton Collisions at the LHC

S. Acharya *et al.*^{*} (A Large Ion Collider Experiment Collaboration)

Red band (theory prediction): J. Haidenbauer, G. Krein, U.-G. Meißner and L. Tólos Eur. Phys. J. A 47, 18 (2011)

Femtoscopy of the DN interaction

First study of the two-body scattering involving charm hadrons

ALICE Collaboration*

Femtoscopy of the ϕN interaction

PHYSICAL REVIEW LETTERS 127, 172301 (2021)

Editors' Suggestion

15

Femtoscopy of the $\Lambda_c N$ - prediction

184 Page 6 of 8

Eur. Phys. J. A (2020) 56:184

J. Haidenbauer & GK, Eur. Phys. J. A 56, 184 (2020)

Femtoscopy of J/ψ -nucleon

— Interaction: weakly attractive, S-wave dominated

$$\psi(\boldsymbol{k},\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} + \psi_0(k,r) - j_0(kr)$$

 $\psi_0(k,r)$ contains the effects of the interaction

— Simplification (not unrealistic):

$$S_{12}(r) = \frac{1}{(4\pi R^2)^{3/2}} e^{-r^2/4R^2}$$

Normally used: $R = 1 \text{ fm} - 1.3 \text{ fm} (p\bar{p})$, R = 1.5 fm - 4.0 fm (pA, AA)

— Correlation function:

$$C(k) = 1 + \frac{4\pi}{(4\pi R^2)^{3/2}} \int_0^\infty dr \, r^2 \, e^{-r^2/4R^2} \left[|\psi_0(k,r)|^2 - |j_0(kr)|^2 \right]$$

Source size × interaction range

If emission happens outside ''interaction range'': $\psi_0(k,r) \to \psi_0^{\rm asy}(k,r)$

$$\psi_0^{asy}(k,r) = \frac{\sin(kr+\delta_0)}{kr} = e^{-i\delta_0} \left[j_0(kr) + f_0(k) \frac{e^{ikr}}{r} \right]$$

$$f_0(k) = \frac{e^{i\delta_0} \sin \delta_0}{k} \approx^{k \to 0} \frac{1}{-1/a_0 + r_0 k^2/2 - ik}$$

Lednicky-Lyuboshits (LL) model

$$C(k) = 1 + \frac{|f_0(k)|^2}{2R^2} \left(1 - \frac{r_0}{2\sqrt{\pi R}}\right) + \frac{2\text{Re}f_0(k)}{\sqrt{\pi R}}F_1(2kR) - \frac{\text{Im}f_0(k)}{R}F_2(2kR)$$
$$F_1(x) = \frac{1}{x} \int_0^x dt \, e^{t-x}, \qquad F_2(x) = \frac{1}{x} \left(1 - e^{-x^2}\right)$$

Validity: $r0 \ll R$

Universal formula, independent of interaction details

Correlation and $\langle (g \boldsymbol{E})^2 \rangle_N$

LL for small k:

$$C(k) = 1 - \frac{1}{2\pi^{3/2}} \left(1 - \frac{8}{3}k^2 R^2 \right) \frac{\mu_{J/\psi N} \,\alpha_{J/\psi} \,\langle (g\boldsymbol{E})^2 \rangle_N}{R}$$

$oldsymbol{C}(k)$ gives direct access to $\langle (goldsymbol{E})^2 angle_N^*$

*Under validity of LL model

Quarkonium-nucleon EFT (QNEFT)

Degrees of freedom - Scales - Power counting

— DOF: nucleons (N), quarkonia (ϕ), pions (π)

— Scales:
$$E_N, E_\phi, E_\pi \ll \Lambda_\chi \simeq 1$$
 GeV

Power counting: powers of
$$\frac{m_{\pi}}{\Lambda_{\chi}}$$

- Loops: dimensional regularization

J. Tarrús Castellà & GK, Phys. Rev. D 98, 014029 (2018)

QNEFT input: $\phi - \pi$ vertex

pNRQCD \rightarrow gWEFT (J/ψ polarizabilityt)

gWEFT $\rightarrow \chi$ EFT (trace anomaly)

 1 A. Vairo, in QCHS IV, ed. W. Lucha and K. M. Maung (World Scientific, 2002) 2 N. Brambilla, GK, J. Tarrús Castellà, A. Vairo, Phys. Rev. D 93 054002 (2016)

QNEFT predictions

QNEFT: J/ψ polarizability + χ EFT

- Weakly attractive
- Tail: van der Waals type of force

$$V_{\rm vdW}(r) \xrightarrow{r \gg 1/2m_{\pi}} \frac{3g_A^2 m_{\pi}^4 (c_{di} + c_m)}{128\pi^2 F^2} \frac{e^{-2m_{\pi}r}}{r^2}$$

- S-wave dominated:

Effective range expansion (ERE):

$$f_0(k) = \frac{1}{k \cot \delta - ik} = \frac{1}{-\frac{1}{a_0} + \frac{1}{2} r_0 k^2 - ik} \begin{cases} -0.71 \text{ fm} \leqslant a_0 \leqslant -0.35 \text{ fm} \\ 1.29 \text{ fm} \leqslant r_0 \leqslant 1.35 \text{ fm} \end{cases}$$

Phenomenological models

Finite well¹:

$$V(r) = \begin{cases} -\frac{2\pi}{3} \left(\frac{\alpha_{J/\psi}}{R_N^3}\right) m_N & \text{for} \quad r < R_N \\ 0 & \text{for} \quad r > R_N \end{cases}$$

Multipole expansion + χ SQM²

$$V(r) = -\alpha_{J/\psi} \frac{4\pi^2}{b} \left(\frac{g^2}{g_s^2}\right) \left[\nu \rho_E(r) - 3p(r)\right] \begin{cases} \rho_E(r), p(r) : \text{ energy density, pressure} \\ b = 27/3, \quad g^2/g_s^2 = 1, \quad \nu = 1.5 \end{cases}$$

¹ J. Ferretti, E. Santopinto, M. N Anwar and M. Bedolla, Phys. Lett. B 789, 562 (2019)
 ² M.I. Eides, V.Y. Petrov and M.V. Polyakov, Eur. Phys. J. C 78, 36 (2018)

ERE parameters (phenom. models)

Essentially one unknown parameter: $lpha_{J/\psi}$

ERE parameters (in fm) for different $\alpha_{J/\psi}$ (in GeV⁻³)

	Finite well*		χ SQM	
$lpha_{J/\psi}$	a_0	r_0	a_0	r_0
2.00	-0.68	1.59	-0.42	1.86
1.60	-0.47	1.86	-0.30	2.25
0.54	-0.12	4.50	-0.08	6.00
0.24	-0.05	9.46	-0.03	13.05
* 7	1.0			

 $*R_N = 1 \, \text{fm}$

4. Predictions J/ψ -nucleon femtoscopy

Use of ERE

Full wave function

5. Conclusions & Perspectives

- 1. Trace anomaly: how QCD "explains" proton's mass
- 2. Femtoscopy of J/ψ -nucleon: access key matrix element
- 3. Femtoscopy sensitive to interaction if $\alpha_{J/\psi} \ge 0.25 \text{ GeV}^{-3}$
- 4. How about quarkonium-pion?
- 5. Open issues:

Theory: LL model & multipole expansion, lattice QCD, models

Experiment: source size, nonfemtoscopic correlations, etc

6. Prospects: cautiously optimistic !

$\bar{p}d \rightarrow J/\psi \, p \, \pi^-$: Panda @ Fair, amber @ Cern

Similar to $\overline{p}d \rightarrow D \overline{D}N$: Panda @ Fair

Fig. 1. Contributions to the reaction $\bar{p}d \rightarrow D\bar{D}N$: a) the Born (nucelon exchange) diagram. T_A denotes the annihilation amplitude. b) Meson rescattering diagram. T_M denotes the meson-nucleon scattering amplitude. Note that both DNand $\bar{D}N$ scatterings contribute to the reaction amplitude.

J. Haidenbauer, GK, U.-G. Meißner, and A. Sibirtsev, Eur. Phys. J. A 37, 55 (2008)

Thank you

Funding

