Belle & Belle II recent results Junhao Yin on behalf of Belle&Belle II

Belle experiment at KEKB

- Selle detector has good performances on momentum/vertex resolution; particle identification, etc.
- charm physics.

• KEKB is an asymmetric-energy e^+e^- collider operating near $\Upsilon(4S)$ mass peak ($\sim 10.58 \text{ GeV}/c^2$, $>B\overline{B}$ threshold).

• Accumulated data set of ~ 1 ab⁻¹: not only a large $B\overline{B}$ sample (B-factory); but also a large charm sample to study

SuperKEKB and Belle II: The next generation B-factory

Upgraded detector and accelerator

Particle Identification:

Time-of-Propagation counter (barrel) Prox. Focusing Aerogel RICH (fwd)

positron (4 GeV)

Central Drift Chamber:

He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Readout (TRG, DAQ):

Max. 30kHz L1 trigger ~100% efficient for hadronic events. 1MB (PXD) + 100kB (others) per event - over 30GB/sec to record

Offline computing:

Distributed over the world via the GRID

arXiv:1011.0352 [physics.ins-det]

Belle II luminosity

Belle II already achieve the world record instantaneous luminosity: $4.7 \times 10^{34} / cm^2 / s$ Integrated luminosity: 427.79 fb^{-1}

Baryon spectroscopy

Fruitful results recently

- Evidence of new excited charmed baryon decays to $\Sigma_c(2455)^{0,++}\pi^{\pm}$
- Observation of $\Omega(2012)^- \rightarrow \Xi(1530)\bar{K}$
- Measurement of $\Xi_c^0 \to \Lambda_c^+ \pi^-$

•

• First measurement of the $\Lambda_c^+ \rightarrow p\eta'$ decay

Production:

- fragmentation
- Λ_{c}^{+} **B-decays** 0

Focus:

- Searching for new states
- **Properties measurement** 0

Evidence of new excited charmed baryon decays to $\Sigma_c (2455)^{0,++} \pi^{\pm}$

State	Mass (<i>MeV/c</i> ²)	Width (<i>MeV</i>)	
$\Lambda_{c}(2880)^{+}$	2881.63 <u>+</u> 0.24	$5.6^{+0.8}_{-0.6}$	
$\Lambda_{c}(2940)^{+}$	2939.6 ^{+1.3}	20^{+6}_{-5}	
$\Lambda_c(2910)^+$ (this analysis)	2913.8 ± 5.6 ± 3.8	51.8 ± 20.0 ± 18.8	

arXiv: 2206.08822

Based on $772 \times 10^6 B\bar{B}$ events on Belle

In $\bar{B}^0 \rightarrow \Sigma_c (2455)^{0,++} \pi^{\pm} \bar{p}$, resonant state is found on $M(\Sigma_{c}(2455)^{0,++}\pi^{\pm}).$

Significance: 4.2 σ after considering possible $\Lambda_c(2880)^+$ or $\Lambda_{c}(2940)^{+}$ contribution.

Evidence of new excited charmed baryon decays to $\Sigma_c (2455)^{0,++} \pi^{\pm}$

arXiv: 2206.08822

Simultaneous fit with common resonant parameters.

Consistent with combined fit.

Early search found no signal [1]. Improve the selection criteria and signal parameterization.

Clear $\Omega(2012)^-$ signal could be seen on $M(\Xi^-\pi^+K^-)$. Significance: 5.2σ after considering systematic uncertainties

• Optimized mass window: $M(\Xi^{-}\pi^{+}) < 1.517$ GeV/c² to remove $\Xi(1530)$ not from $\Omega(2012)$.

[1] Phys. Rev. D 100, 032006 (2019).

Simultaneous fit to $M(\Xi^{-}\pi^{+}K^{-})$, $M(\Xi^{0}K^{-})$, and $M(\Xi^{-}K_{S}^{0})$, signal described with Flatté:

$$T_n(M) = \frac{g_n}{|M - m_{\Omega(2012)} + \frac{1}{2}} \sum_{j=1}^{N} \frac{g_n}{j}$$

 g_n is the effective coupling to the *n*-body final state, which are fitted to be:

$$g_3 = (41.1 \pm 35.8 \pm 6.0) \times 10^{-2}$$
 and B
 $g_2 = (1.7 \pm 0.3 \pm 0.3) \times 10^{-2}$.

 $k_n(M)$ $\sum_{j=2,3} g_j [\kappa_j(M) + i k_j(M)]|^2,$

Franching fraction ratio: $\mathcal{R}_{\Xi\bar{K}}^{\Xi\pi\bar{K}} = 0.97 \pm 0.24 \pm 0.07$,

istent with molecular interpretation for $\Omega(2012)^{-1}$

Quarkonium spectroscopy

Below $D\bar{D}/B\bar{B}$ threshold: Good agreement!

Above $D\bar{D}/B\bar{B}$ threshold: Exotic states!!

Parallel properties in $c\bar{c}$ and $b\bar{b}^{3400}$

Excellent experimental field!

ū S B decays

Search for $X(3872) \rightarrow \pi^+ \pi^- \pi^0$

Based on $772 \times 10^6 B\bar{B}$ events on Belle, in $B \to KX(3872)$

Upper limit is estimated at 90% C.L. < 1.3%. Quote $\mathscr{B}(B \to KX(3872))$ from **PRD 100, 094003 (2019)**.

arXiv: 2206.08592

Signal is searched for in the assumption of $X(3872) \rightarrow \pi^+\pi^-\pi^0$ uniformly [named as: case I]

Could be used to provide constraints on the triangle logarithmic singularity of $X(3872) \rightarrow D^0 \overline{D}^{*0} \rightarrow D^0 \overline{D}^0 \pi^0$.

Unique scan data near $\sqrt{s} = 10.75$ GeV

JHEP 1910, 220 (2019)

NEW from Belle II

In November 2021, Belle II collected 19fb^{-1} of unique data at energies above the $\Upsilon(4S)$: four energy scan points around 10.75 GeV

Physics goal: understand the nature of the Y(10753).

With the **new** scan data around $\sqrt{s} = 10.75$ GeV

Implying a $\omega \chi_h$ hadro-bottomonium interpretation of Y(10750)

NEW from Belle II Observation of $Y(10750) \rightarrow \omega \chi_{hI}$ in $e^+e^- \rightarrow \gamma \omega \Upsilon(1S)$

Search for $X_b \to \omega \Upsilon(1S)$ in $e^+e^- \to \gamma \omega \Upsilon(1S)$

Upper limits of	\sqrt{s} (GeV)	10.653	10.701	10.745	10.80
$\sigma_{\rm B}(e^+e^- \rightarrow \gamma X_b) \cdot \mathscr{B}(X_b \rightarrow \omega \Upsilon(1S))$ (pb) at 90% C.L.	$M(X_{\rm b}) = 10.6 \ {\rm GeV/c^2}$	0.45	0.33	0.10	0.14
	$M(X_{\rm b}) = 10.45 \ {\rm GeV/c^2}$	0.14	0.25	0.06	0.08
	$M(X_{\rm b}) = 10.65 \ {\rm GeV/c^2}$	0.54	0.84	0.14	0.36

Summary and outlook

- Belle and Belle II provide unique and fertile physics environment.
- Even a decade after data taking finished, the Belle experiment is producing interesting and important results.
- Belle II, the next generation B-factory, can make significant impacts in spectroscopy.
 - Precise measurement;
 - Spin-parities, transitions, and quantum numbers determination;
 - New decays searching;
 - Prediction/model/theory testing
- ^o Belle II with > 400 fb⁻¹ data, including unique $\Upsilon(10750)$ scan data, can already provide physics output on the level of its predecessors.

Back up

 $M(pk^{-}\pi^{+}\pi^{-})-M(pk^{-}\pi^{+})+m(\Lambda_{c}^{+}) [GeV/c^{2}]$

$$L_c^+ \pi^-$$

$$\frac{\Xi_c^0 \to \Lambda_c^+ \pi^-)}{\Xi_c^0 \to \Xi^- \pi^+)} = \frac{N_{\Lambda_c \pi} \times \epsilon_{\Xi\pi}^{\text{ref}} \times \mathcal{B}(\Xi^- \to \Lambda \pi^-) \times \mathcal{B}(\Lambda \to p \pi^-)}{N_{\Xi\pi} \times \epsilon_{\Lambda_c \pi}^{\text{sig}} \times \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)} = 0.38 \pm 0.04(\text{stat.}) \pm 0.04(\text{syst.}),$$

arXiv: 2206.08527

Measurement of $\Lambda_c^+ \to p\eta'$

$$\frac{\mathcal{B}(\Lambda_c^+ \to p\eta')}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} = (7.5)$$

 $54 \pm 1.32 \pm 0.73) \times 10^{-3},$

arXiv: 2112.14276