Testing the multiplicity limit on the collective flow measurements in small system collisions at the LHC

Signs of collective behaviour also in small systems \rightarrow QGP?

- Cumulants and Two-Particle Correlations previously used \rightarrow jet contributions are not fully understood
- Multiplicity definition and Jet acceptance are different between experiments \rightarrow how to compare?

[Theory]

- Low limit of the multiplicity where Hydrodynamics works?
- The large discrepancies between the model predictions

Two-Particle Correlations and Improved flow extraction method

Low multiplicity template fit method

- Subtract the remaining away-side jet contribution in high multiplicity event relative to the low multiplicity term
- F: Ratio of away-side jet fragments in high-multiplicity to low-multiplicity events $(60-100\%), F = 1.304 \pm 0.018$
- Assumptions
 - No ridge or flow in the LM-template
 - No away-side jet modifications (quenching) in HM events relative to the LM-template

Verification of the Low multiplicity-template fit

- with models: qualitative agreement of PYTHIA 8 Tune 4C
- Data and String Shoving show increasing near-side yield with increasing multiplicity, while that is not the case for EPOS LHC and PYTHIA 8 Tune 4C

Near-side jet yield measured by short-range correlations

$$Y^{\text{near}} = \int_{|\Delta\eta| < 1.6} d'\eta \left(\frac{1}{N_{\text{trig}}} \frac{dN_{\text{pair}}}{d'\eta}\right)$$

Away-side jet yield : $Y_{\text{jet}}^{\text{Away}} = FY_{\text{jet}}^{\text{Away,LN}}$

INEL_{>0, p}>0.4, |η|<2.5

Cent: 20-40

-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5

- ► The relative away-side jet contribution, F, can be tested by comparing the ratio which only are caused by the jet acceptance.
- Limited η acceptance as ratio (Phys.Rev.D74:072002,2006)

Results and Discussions

Multiplicity mapping between experiments The EPOS LHC is scaled to

Summary

LM-template fit subtracts the remaining away

Note that multiplicity class for ATLAS is classified with central particles ($|\eta| < 2.5, p_T > 0.4$ GeV/c), $N_{\text{Mult}}^{\text{ATLAS}} > 60$

the measurements. Addition p_T cut applied to

have the same kinematic cut as ATLAS.

MAP between ATLAS and ALICE

Exp.	ALICE	ATLAS
Mult. Class (%)	$N_{ m ch}(\eta < 0.5)$	$N_{ m ch,ATLAS}^{ m rec}~(p_{ m T}>0.4, \eta <2.5)$
0-0.1	31.33	84.07 (80.33)
1–5	20.02	50.10(48.83)
5-20	13.99	33.70(29.15)
20-60	7.2	16.11(14.12)
60-100	N/A	5.23

jet contribution properly.

- The effect is 30% for 0-0.1% multiplicity in pp 13 TeV, must be considered.
- Different experimental multiplicity definitions can be compared by using the measured $dN/d\eta$ distributions.
- Multi-jet effect for larger η acceptance should be studied further.
- Multiplicity dependence of v_2 in pp collsions, accessing lower multiplicities, on progress.

Anna Önnerstad^{1,2}, D. J. Kim^{1,2}

anna.onnerstad@cern.ch

```
<sup>1</sup>University of Jyväskylä, <sup>2</sup>Helsinki Institute of Physics
```

