Thermal Transitions in Dense Two-Colour QCD

Dale Lawlor¹, Simon Hands², Seyong Kim³, Jon-Ivar Skullerud¹

¹Department of Theoretical Physics; National University of Ireland, Maynooth ²Department of Mathematical Sciences; University of Liverpool ³Department of Physics; Sejong University

XQCD 2022, 27th July 2022

Why QC₂D?

- Would like to probe dense QCD on the lattice
- Sign problem means probability density is complex for real QCD at $\mu_B \neq 0$, but is non-negative in SU(2) QCD
- Baryons are now quark-quark pairs, so follow Bose-Einstein Statistics
- Enables us to apply lattice techniques to areas like Neutron Star physics.
- This particular study is on runs at a larger volume and range of diquark sources

Lattice Setup

Phase diagram of QC₂D for $\frac{m_{\pi}}{m_{\pi}} = 0.80(1)$.

- Using a spatial extent $N_s = 24$
- Conducted a temperature scan using fixed β = 1.9 at aμ_b = 0.400

Superfluid Phase Transition

- The superfluid phase transition occurs around T ~ 100 MeV.
- This indicates that the superfluid phase transition is indeed distinct from the deconfinement crossover.

Quark Number Density

Thermodynamic Observables