Unsupervised learning universal critical behavior via the intrinsic dimension

Tiago Mendes Santos

Handwriting

Physical data sets [Many-body physics]

Large **[high-dimensional]** data sets Extract information

[Characterize phases of matter and their transitions]

Handwriting

0 0	0 1	0 1	1	0 0	1	1 0	0 1
0	1	0	0	1	0	0	1
0	0	0	0	Τ	0	Τ	T

Physical data sets [Many-body physics]

Intrinsic dimension (ID)

Data set lies in a manifold whose ID is lower than the number of coordinates

$$\vec{X} = (x_1, x_2, x_3)$$
$$\mathsf{ID} = \mathsf{1}$$

Intrinsic dimension (ID)

Data set lies in a manifold whose ID is lower than the number of coordinates

$$\vec{X} = (x_1, x_2, x_3)$$

ID = 1

$$\beta = \frac{1}{k_B T}$$

$$Z = \sum_{\vec{X}} e^{-\beta E(\vec{X})}$$

$$\vec{X} = (x_1, x_2, \dots, x_{N_s})$$

Partition-function data sets
$$\beta = \frac{1}{k_B T}$$
$$Z = \sum_{\vec{X}} e^{-\beta E(\vec{X})}$$

$$\vec{X} = (x_1, x_2, \dots, x_{N_s})$$

Set of points in a high-dimensional space

Partition-function data sets

$$Z = \sum_{\vec{X}} e^{-\beta E(\vec{X})}$$

3-spin XY model

$$T = 0$$

Partition-function data sets

$$Z = \sum_{\vec{X}} e^{-\beta E(\vec{X})}$$

3-spin XY model

$$T = 0$$

$$ID = 1$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{$$

$$T = 100$$

$$E(\{\vec{\theta}\}) = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) \qquad \qquad \vec{\theta} = (\theta_1, \theta_2, \theta_3)$$

 $Z = \sum_{\vec{X}} e^{-\beta E(\vec{X})}$ **Ordered phase** [Symmetry-broken or topological] 00010110 01110101 01001001 ... 00001011 Phase transition in configuration space? D of data sets emerging in the vicinity of **phase** transitions

Extract information of the system from raw data universal properties?

 T_c

Disordered

 \rightarrow Machine learning phases of matter and phases transitions [Many-body physics]

 \rightarrow How to estimate the intrinsic dimension (ID)

 \rightarrow ID and phase transitions

Machine learning \rightarrow raw physical data sets

Characterize phases of matter and their transitions

 \rightarrow Which physical quantity to measure? Topological transitions, thermal-MBL transitions, ...

 \rightarrow Detect the important degrees of freedom of a system

Supervised ML: Labeled configurations

Machine learning phases of matter

Juan Carrasquilla^{1*} and Roger G. Melko^{1,2}

2D-Ising configurations

Unsupervised ML:Unlabeled configurations

Dimension reduction

0	0	0	1	0	1	1	0	
0	1	1	1	0	1	0	1	
0	1	0	0	1	0	0	1	
0	0	0	0	1	0	1	1	

Principal component analysis (PCA)

Unsupervised ML:Unlabeled configurations

Dimension reduction

$$\begin{array}{c} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ & & & & & & \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}$$

Principal component analysis (PCA) \rightarrow Linear transformation

$$\mathbf{X}^T \mathbf{X} \mathbf{w}_n = \lambda_n \mathbf{w}_n$$

Unsupervised ML:Unlabeled configurations

Dimension reduction

$$\begin{array}{c} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ & & & & & & \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}$$

Principal component analysis (PCA) \rightarrow Linear transformation

$$\mathbf{X}^T \mathbf{X} \mathbf{w}_n = \lambda_n \mathbf{w}_n$$

More complicated transitions (e.g., topological transitions, ...) are not described by PCA

(I) How to estimate the ID?

(II) ID and phase transitions [classical and quantum]

How to estimate the ID?

Different approaches: projection (e.g., **PCA**), fractal, **nearest-neighbors (NN)**

How to estimate the ID?

nearest-neighbors (NN) method → geometrical approach

Statistics of NN distances [e.g., Euclidian, Hamming, etc]

 $v(i) \sim (r_2(i)^{I_d} - r_1(i)^{I_d})$

How to estimate the ID?

Nearest neighbors(NN)-based estimator [TWO-NN method]

Probability distribution function

$$f(\mu) = I_d \mu^{-1 - I_d}$$

Elena Facco et. al. Scientific Reports (2017)

Assumption: data set is locally uniform in density

 $I_d \approx 1$

 $I_d \approx N_s$

ID (TWO-NN) \rightarrow Local feature of configuration space \rightarrow Depends on the typical value of distances [scale-dependent quantity] $N_r \rightarrow$ Number of points in the data set

ID of partition-function data sets \rightarrow Vicinity of phase transitions (Classical and Quantum)

TMS, X. Turkeshi, M. Dalmonte, A. Rodriguez, PRX 11, 011040 (2021)

TMS, A. Angelone, A. Rodriguez, R. Fazio, M Dalmonte, PRX Quantum 2, 030332 (2021)

ID of partition-function data sets \rightarrow Vicinity of phase transitions (Classical and Quantum)

(1) Second-order PT(2) Berezinskii-Kosterlitz-Thouless (BKT)(3) First-order PT

Data sets generated by Monte Carlo simulations

Disordered

Ordered phase [Symmetry-broken or topological]

TMS, X. Turkeshi, M. Dalmonte, A. Rodriguez, PRX 11, 011040 (2021)

TMS, A. Angelone, A. Rodriguez, R. Fazio, M Dalmonte, PRX Quantum 2, 030332 (2021)

1. Second-order phase transition

$$\xi \sim (T - T_c)^{-\nu}$$

Finite size scaling

$$Q(t,L) = L^{\sigma} f(\xi/L)$$

Id exhibit a local minimum at T*

 $T_c = 2.283(2), \ \nu = 1.02(2),$

Principal component analysis (PCA)

T < Tc

Projection of the Ising data set in the two leading PC

 $\tilde{\lambda}_n \approx f,$

 $I_{d,\text{PCA}}$

 $\overline{n=1}$

Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences

2D XY model

Id exhibit a local minimum at T*

Finite size scaling

$$\xi \sim \exp\left(\frac{a}{\sqrt{T - T_c}}\right)$$

Quantum models

1d XXZ model BKT transition

1d Quantum Ising model Sec. order transition

Generic features of raw quantum data sets [e.g., Id] exhibit scaling behavior in the vicinity of quantum critical points \rightarrow Unsupervised learning quantum phase transitions

TMS, X. Turkeshi, M. Dalmonte, A. Rodriguez, PRX 11, 011040 (2021)

TMS, A. Angelone, A. Rodriguez, R. Fazio, M Dalmonte, PRX Quantum 2, 030332 (2021)

Thank you!

Marcello Dalmonte (ICTP/SISSA)

Xhek Turkeshi (ICTP/SISSA)

Alex Rodriguez (ICTP)

Adriano Angelone (LPTMC,Sorbonne Université)

Rosario Fazio (ICTP)

PRX 11, 011040 (2021)

PRX Quantum 2, 030332 (2021)

Supplemental material

Why the ID exhibit universal scaling behavior?

Distances are related with many-body correlation functions

$$r(\vec{\theta^i}, \vec{\theta^j}) = \sqrt{2\sum_{k=1}^{N_s} \left(1 - \vec{S}_k^i \vec{S}_k^j\right)}.$$

$$I_d \sim -\frac{1}{\ln(r_2^*/r_1^*)}$$

Statistics of first nearest-neighbor distances

Structural transition in Configuration space

Connectivity between neighboring points in configuration space

 $Fm \rightarrow fraction of points in the data set whose first two neighbors have same magnetization sign$

Fnu \rightarrow fraction of points in the data set whose first two neighbors have same winding number

(1) Rydberg atom arrays

(1) Rydberg atom arrays

Hard-core bosons (FSS model)

$$\frac{H}{\hbar} = \frac{\Omega(t)}{2} \sum_{i} \sigma_i^x - \Delta(t) \sum_{i} n_i + \sum_{i < j} V_{ij} n_i n_j$$

3. First-order phase transition

Synthetic quantum systems

Rydberg atoms in optical tweezers

Fermions in optical lattices

Strongly correlated quantum systems

Quantum simulators

Rydberg atoms in optical tweezers [Ising-like Hamiltonians]

 $\rightarrow \,$ Quantum many-body phases and phase transitions $\rightarrow \,$ Coherent dynamics

0 0 0 0

Rydberg atoms in optical tweezers [Ising-like Hamiltonians]

 \rightarrow Tunability \rightarrow Probe local properties and quantum correlations [Entanglement]

Quantum correlations

Probing Rényi entanglement entropy via randomized measurements Science 2019

Tiff Brydges^{1,2*}, Andreas Elben^{1,2*}, Petar Jurcevic^{1,2}, Benoît Vermersch^{1,2}, Christine Maier^{1,2}, Ben P. Lanyon^{1,2}, Peter Zoller^{1,2}, Rainer Blatt^{1,2}, Christian F. Roos^{1,2}† Article

Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms

Pascal Scholl et. al. Nature (2021)

Article

Quantum phases of matter on a 256-atom programmable quantum simulator

Sepehr Ebadi et. al. Nature (2021)

Article

Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms

Pascal Scholl et. al. Nature (2021)

01001001

000

Article

Quantum phases of matter on a 256-atom programmable quantum simulator

Sepehr Ebadi et. al. Nature (2021)

New tools to characterize quantum correlations in many-body systems?

Ordered phase g_c Disordered g [Symmetry-broken or topological]

Quantum spin models

- \rightarrow 1d quantum Ising model
- $\rightarrow\,$ 1d XXZ model
- \rightarrow 2d Heisenberg bilayer model

Ordered phase g_c Disordered g [Symmetry-broken or topological]

Defining quantum data sets

$$Z = \sum_{\alpha} \left\langle \alpha \right| e^{-\beta \hat{H}} \left| \alpha \right\rangle$$

Ordered phase g_c Disordered g [Symmetry-broken or topological]

Defining quantum data sets

$$Z = \sum_{\alpha} \left< \alpha \right| e^{-\beta \hat{H}} \left| \alpha \right>$$

Quantum-to-classical mapping \rightarrow path-integral

$$Z = \sum_{\alpha_0} \sum_{\alpha_1} \cdots \sum_{\alpha_L - 1} \langle \alpha_0 | e^{-\Delta_\tau H} | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | e^{-\Delta_\tau H} | \alpha_1 \rangle \langle \alpha_1 | e^{-\Delta_\tau H} | \alpha_0 \rangle$$

Quantum models

 $Z=\sum_{\alpha}\left\langle \alpha\right|e^{-\beta\hat{H}}\left|\alpha\right\rangle$

1d Quantum Ising model Sec. order transition

