IMPLICIT QUANTILE NETWORKS FOR EMULATION

BRADEN KRONHEIM^{1,2}, **MICHELLE KUCHERA**¹, HARRISON PROSPER³, RAGHU RAMANUJAN^{1,} ALI AL KADHIM³

¹DAVIDSON COLLEGE, ²UNIVERSITY OF MARYLAND, ³FLORIDA STATE UNIVERSITY

XVII QUARK CONFINEMENT AND THE HADRON SPECTRUM **4 AUGUST 2022**

DAVIDSON

Institute for Research & Innovation

in Software for High Energy Physics

IMPLICIT QUANTILE NETWORKS FOR EMULATION

arXiv:2111.11415

NeurIPS 2021 – Thirty-fifth Workshop on Machine Learning and the Physical Sciences, Dec 2021, Vancouver, Canada

arXiv:1806.05575

Proceedings of the 35th International Conference on Machine Learning, vol 80. pages 3936-3945. 10-15 Jul 2018

Institute for Research & Innovation in Software for High Energy Physics

JET SIMULATION AND CORRECTION

DATASET: Generated via Pythia8 + Delphes + anti- K_T + FastJet

jet simulation

JET SIMULATION AND CORRECTION

J. BLUE, ET.AL., CHEP '21 EPJ WOC **251**, 03055 (2021) <u>HTTPS://DOI.ORG/10.1051/EPJCONF/202125103055</u>

jet simulation

EXISTING METHODS

(conditional) generative adversarial networks

arXiv:1912.00477 arXiv:1807.01954 arXiv:1805.00850 arXiv:1712.10321

normalizing flows

arXiv:1904.12072 arXiv:2001.05486 arXiv:2001.10028 arXiv:2012.09873 arXiv:2106.05285

EXISTING METHODS

(conditional) generative adversarial networks

arXiv:1912.00477 arXiv:1807.01954 arXiv:1805.00850 arXiv:1712.10321

How to GAN away Detector Effects

Marco Bellagente¹, Anja Butter¹, Gregor Kasieczka², Tilman Plehn¹, and Ramon Winterhalder¹

1 Institut für Theoretische Physik, Universität Heidelberg, Germany 2 Institut für Experimentalphysik, Universität Hamburg, Germany bellagente@thphys.uni-heidelberg.de

Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network

Martin Erdmann^a Jonas Glombitza^a Thorben Quast^{a,b}

^aIII. Physikalisches Institut A, Rheinisch Westfälische Technische Hochschule, Aachen, Germany ^bEP-LCD, CERN, Geneva, Switzerland

Fast and accurate simulation of particle detectors using generative adversarial networks

Pasquale Musella · Francesco Pandolfi

CALOGAN: Simulating 3D High Energy Particle Showers in Multi-Layer **Electromagnetic Calorimeters with Generative Adversarial Networks**

Michela Paganini,^{1,2,*} Luke de Oliveira,^{2,†} and Benjamin Nachman^{2,‡}

¹Department of Physics, Yale University, New Haven, CT 06520, USA ²Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA (Dated: January 1, 2018)

Flow-based generative models for Markov chain Monte Carlo in lattice field theory

M. S. Albergo,^{1,2,3} G. Kanwar,⁴ and P. E. Shanahan^{4,1}

¹Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

²Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K.

³University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

⁴Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

i-flow: High-dimensional Integration and Sampling with Normalizing Flows

CHRISTINA GAO¹, JOSHUA ISAACSON¹, AND CLAUDIUS KRAUSE¹

¹ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA

Event Generation with Normalizing Flows

Christina Gao,¹ Stefan Höche,¹ Joshua Isaacson,¹ Claudius Krause,¹ and Holger Schulz²

¹Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA ²Department of Physics, University of Cincinnati, Cincinnati, OH 45219, USA

Measuring QCD Splittings with Invertible Networks

Sebastian Bieringer¹, Anja Butter¹, Theo Heimel¹, Stefan Höche², Ullrich Köthe³, Tilman Plehn¹, and Stefan T. Radev⁴

1 Institut für Theoretische Physik, Universität Heidelberg, Germany 2 Fermi National Accelerator Laboratory, Batavia, IL, USA **3** Heidelberg Collaboratory for Image Processing, Universität Heidelberg, Germany 4 Psychologisches Institut, Universität Heidelberg, Germany heimel@thphys.uni-heidelberg.de

CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows

Claudius Krause and David Shih

NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA *E-mail*: Claudius.Krause@rutgers.edu, shih@physics.rutgers.edu

normalizing flows

arXiv:1904.12072 arXiv:2001.05486 arXiv:2001.10028 arXiv:2012.09873 arXiv:2106.05285

IMPLICIT QUANTILE NETWORKS STATS REVIEW

IMPLICIT QUANTILE NETWORKS STATS REVIEW

$$\mathcal{L}(f, x, y, \tau) = \begin{cases} \tau(y - f(x, \tau)) & y \\ (\tau - 1)(y - f(x, \tau)) & y \end{cases}$$

IMPLICIT QUANTILE NETWORKS LOSS FUNCTION

$$\mathcal{L}(f, x, y, \tau) = \begin{cases} \tau(y - z) \\ (\tau - 1) \end{cases}$$

IMPLICIT QUANTILE NETWORKS LOSS FUNCTION

$$\mathcal{L}(f, x, y, \tau) = \begin{cases} \tau(y - f(x, \tau)) & y \ge f(x, \tau) \\ (\tau - 1)(y - f(x, \tau)) & y < f(x, \tau) \end{cases}$$

IMPLICIT QUANTILE NETWORKS LOSS FUNCTION

$$\mathcal{L}(f, x, y, \tau) = \begin{cases} \tau(y - f(x, \tau)) & y \ge f(x, \tau) \\ (\tau - 1)(y - f(x, \tau)) & y < f(x, \tau) \end{cases}$$

 $\left(\frac{dy}{d\tau}\right)^2$ $\frac{\frac{dy}{d\tau}}{\frac{dy}{d\tau}} \ge 0$ regularization 0

 $p(y | x_1, x_2)$

 $(x_1, x_2) \rightarrow y$

$$\mathcal{L}(f, x, y, \tau) = \begin{cases} \tau(y - f(x, \tau)) & y \ge \\ (\tau - 1)(y - f(x, \tau)) & y < \end{cases}$$

IMPLICIT OUANTILE NETWORKS ARCHITECTURE

$p(p_T, \eta', \phi', m' | p_T, \eta, \phi, m)$

$(p_T, \eta, \phi, m) \rightarrow (p'_T, \eta', \phi', m')$

LICIT OUANTILE NETWORKS ARCHITECTURE

$p(p_T, \eta', \phi', m' | p_T, \eta, \phi, m)$

$(p_T, \eta, \phi, m) \rightarrow (p'_T, \eta', \phi', m')$

IMPLICIT QUANTILE NETWORKS ARCHITECTURE

$(p_T, \eta, \phi, m) \rightarrow (p'_T, \eta', \phi', m')$

 (p_T, η, ϕ, m)

(p'_T, η', ϕ', m') [0,0,1,0]

 (p'_T, η', ϕ')

 (p_T, η, ϕ, m)

(p_T, η, ϕ, m) [0,0,1,0]

 (p'_T, η', ϕ')

 $\tau \sim U(0,1)$

IMPLICIT QUANTILE NETWORKS ARCHITECTURE

 ϕ

IMPLICIT QUANTILE NETWORKS ARCHITECTURE $(p_T, \eta, \phi, m, 1, 0, 0, 0, 0, 0, 0) \rightarrow (p'_T),$ (p_T, η, ϕ, m) $(p_T, \eta, \phi, m, 0, 1, 0, 0, p'_T, 0, 0) \rightarrow (\eta'),$ $(p_T, \eta, \phi, m, 0, 0, 1, 0, p'_T, \eta', 0) \rightarrow (\phi'),$ $(p_T, \eta, \phi, m, 0, 0, 0, 1, p'_T, \eta', \phi') \to (m'),$ (p_T, η, ϕ, m) ϕ [0,0,1,0] (p'_{T}, η', ϕ') p(A, B, C, D) = p(A | D)p(B | A, D)p(C | A, B, D) $\tau \sim U(0,1)$

RESULTS JET SIMULATION

EVENT GENERATION

PARTON JETS

HADRONIZATION CLUSTERING GEN JETS

jet simulation

RESULTS JET SIMULATION

RESULTS JET SIMULATION

RESULTS JET SIMULATION: SUBSPACE

THANK YOU!

BRADEN KRONHEIM^{1,2}, MICHELLE KUCHERA¹, HARRISON PROSPER³, RAGHU RAMANUJAN¹, ALI AL KADHIM³

arXiv:2111.11415

NeurIPS 2021 – Thirty-fifth Workshop on Machine Learning and the Physical Sciences, Dec 2021, Vancouver, Canada

THIS WORK WAS SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER COOPERATIVE AGREEMENT OAC-1836650.1 AND THE NATIONAL SCIENCE FOUNDATION UNDER GRANT NO. 2012865.

nstitute for Research & Innovation in Software for High Energy Physics

