Heavy Quark Dynamics in a Strongly Magnetized Medium

Aritra Bandyopadhyay

In collaboration with : Jinfeng Liao and Hongxi Xing

Based on : 2105.02167, PRD 105 (2022)

Motivation

Formalism

Results

Outline

► Formalism

Results

Outline

Magnetized medium

• Strong magnetic fields are present in collisions (e.g. $eB \sim \hat{O}(10)m_{\pi}^2$ at LHC).

Strong magnetic fields are present in some stellar objects and non-central heavy ion

n

Magnetized medium

- collisions (e.g. $eB \sim \hat{O}(10)m_{\pi}^2$ at LHC).
- interest in theoretical understanding of the properties of a magnetized medium.

Strong magnetic fields are present in some stellar objects and non-central heavy ion

• Introduces extra scale eB in the medium in addition to T, $\mu \rightarrow$ triggers significant

Heavy quark as a QGP signature

- Large mass compared to $T \rightarrow$ External to the bulk medium.
- Generated at the early stage \rightarrow Less contaminated information of the QGP state.

Heavy quark as a QGP signature

- HQs experience drag forces as well as random kicks from the bulk medium.
- A widely adopted approach is to use the Langevin equations for describing HQ in-medium evolution.
- Essential theoretical inputs : HQ momentum diffusion coefficients \rightarrow influence phenomenological modelings of predictions for experimental observables. (R_{AA} and v_2)

Dynamic properties

(e.g. Heavy quark spectra)

Motivation

Results

Outline

B = 0

• Static limit : $M \gg T$

 $\langle \xi_i(t)\xi_j(t')\rangle =$

Single diffusion coefficient κ

- Dynamic limit : $\gamma v \lesssim 1 \rightarrow p$
 - $\langle \xi_i(t)\xi_j(t')\rangle =$

where $\kappa_{ij}(\mathbf{p}) = \kappa_L(p)$

Longitudinal (κ_L) and Transverse (κ_T) diffusion coefficients.

$$= \kappa \, \delta_{ij} \delta(t - t')$$

$$\leq M, M \gtrsim p \gg T$$

=
$$\kappa_{ij}(\mathbf{p}) \ \delta(t-t')$$

$$p) \hat{p}_i \hat{p}_j + \kappa_T(p) \left(\delta_{ij} - \hat{p}_i \hat{p}_j \right)$$

Static and Dynamic limits of Heavy Quark

 $B \neq 0$

Two anisotropic directions - v and B

 $M \gtrsim p > \sqrt{eB} \gg T$

• Case 1 : v || B

Diffusion coefficients $\rightarrow \kappa_L, \kappa_T$

• Case 2 : $\mathbf{v} \perp \mathbf{B}$

Diffusion coefficients $\rightarrow \kappa_1, \kappa_2, \kappa_3$

$$\kappa_i(p) = \int d^3q \frac{d \Gamma(v)}{d^3q} q_i^2$$

• $2 \leftrightarrow 2$ scattering processes in a finite temperature medium

$$qH \rightarrow qH$$
 and $gH \rightarrow gH$ ($q \rightarrow$ qu

At leading order in strong coupling, these scatterings are mediated by one-gluon exchange.

lark, $g \rightarrow$ gluon and $H \rightarrow$ HQ).

$$\Gamma(P \equiv E, \mathbf{v}) = -\frac{1}{2E} \frac{1}{1 + e^{-E/T}} \operatorname{Tr} \left[(\gamma_{\mu} P^{\mu} + M) \operatorname{Im} \Sigma(p_0 + i\epsilon, \mathbf{p}) \right]$$

An effective way of expressing Γ is in terms of the cut/imaginary part of the HQ self energy $\Sigma(P)$

$$\Gamma(P \equiv E, \mathbf{v}) = -\frac{1}{2E} \frac{1}{1 + e^{-E/T}} \operatorname{Tr} \left[(\gamma_{\mu} P^{\mu} + M) \operatorname{Im} \Sigma(p_0 + i\epsilon, \mathbf{p}) \right]$$

$$\Sigma(P) = ig^2 \int \frac{d^4Q}{(2\pi)^4} \mathcal{Q}$$

An effective way of expressing Γ is in terms of the cut/imaginary part of the HQ self energy $\Sigma(P)$

 $\mathscr{D}^{\mu\nu}(Q) \gamma_{\mu} S^{s}_{m}(P-Q) \gamma_{\nu}$

$$\Gamma(P \equiv E, \mathbf{v}) = -\frac{1}{2E} \frac{1}{1 + e^{-E/T}} \operatorname{Tr} \left[(\gamma_{\mu} P^{\mu} + M) \operatorname{Im} \Sigma(p_0 + i\epsilon, \mathbf{p}) \right]$$

$$\Sigma(P) = ig^{2} \int \frac{d^{4}Q}{(2\pi)^{4}} \mathcal{D}^{\mu\nu}(Q) \gamma_{\mu} S_{m}^{s}(P-Q) \gamma_{\nu}$$

$$S_{m}^{s}(K) = e^{-k_{\perp}^{2}/|q_{f}B|} \frac{\gamma_{\mu}K_{\parallel}^{\mu} + M}{K_{\parallel}^{2} - M^{2}} (1 - i\gamma_{1}\gamma_{2})$$

$$\frac{(Q^{2} - d_{3})\Delta_{1}^{\mu\nu}}{Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}} + \frac{\Delta_{2}^{\mu\nu}}{Q^{2} - d_{2}} + \frac{(Q^{2} - d_{1})\Delta_{3}^{\mu\nu}}{(Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}} + \frac{d_{4}\Delta_{4}^{\mu\nu}}{(Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}}$$

$$\frac{Q^{\mu}Q^{\nu}}{Q^{2} - d_{1}} = Q^{\mu}Q^{\nu}$$

$$\frac{q^{\mu}q^{\nu}}{Q^{2} - d_{3}} = \frac{Q^{\mu}Q^{\nu}}{Q^{2} - d_{2}} + \frac{Q^{\mu}q^{\nu}}{Q^{2} - d_{3}} = \frac{Q^{\mu}Q^{\nu}}{Q^{\nu}} = \frac$$

$$\Sigma(P) = ig^{2} \int \frac{d^{*}Q}{(2\pi)^{4}} \mathscr{D}^{\mu\nu}(Q) \gamma_{\mu} S_{m}^{s}(P-Q) \gamma_{\nu}$$

$$S_{m}^{s}(K) = e^{-k_{1}^{2}/|q_{f}B|} \frac{\gamma_{\mu}K_{\parallel}^{\mu} + M}{K_{\parallel}^{2} - M^{2}} (1 - i\gamma_{1}\gamma_{2})$$

$$\mathbb{D}^{\mu\nu}(Q) = \frac{\xi Q^{\mu}Q^{\nu}}{Q^{4}} + \frac{(Q^{2} - d_{3})\Delta_{1}^{\mu\nu}}{(Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}} + \frac{\Delta_{2}^{\mu\nu}}{Q^{2} - d_{2}} + \frac{(Q^{2} - d_{1})\Delta_{3}^{\mu\nu}}{(Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}} + \frac{d_{4}\Delta_{4}^{\mu\nu}}{(Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}} + \frac{Q^{\mu}Q^{\nu}}{Q^{2} - d_{2}} + \frac{Q^{\mu}Q^{\nu}}{(Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}} + \frac{d_{4}\Delta_{4}^{\mu\nu}}{(Q^{2} - d_{1})(Q^{2} - d_{3}) - d_{4}^{2}}$$

where
$$\Delta_1^{\mu\nu} = \frac{1}{\bar{u}^2} \bar{u}^\mu \bar{u}^\nu, \ \Delta_2^{\mu\nu} = g_\perp - \frac{Q_\perp^\mu Q_\perp^\nu}{Q_\perp^2}, \ \Delta_3^{\mu\nu} = \frac{\bar{n}^\mu \bar{n}^\nu}{\bar{n}^2}, \ \Delta_4^{\mu\nu} = \frac{\bar{u}^\mu \bar{n}^\nu + \bar{u}^\nu \bar{n}^\mu}{\sqrt{\bar{u}^2} \sqrt{\bar{n}^2}},$$

 $d_1(Q) = \Delta_1^{\mu\nu} \Pi_{\mu\nu}(Q), \ d_2(Q) = \Delta_2^{\mu\nu} \Pi_{\mu\nu}(Q), \ d_3(Q) = \Delta_3^{\mu\nu} \Pi_{\mu\nu}(Q), \ d_4(Q) = \frac{1}{2} \Delta_4^{\mu\nu} \Pi_{\mu\nu}(Q)$ with

Motivation

Formalism

Outline

Results : $v \parallel B$

Variation of the scaled HQ longitudinal (solid lines) and transverse (dashed lines) momentum diffusion coefficients (for v || B) with T for three different values of eB, i.e. eB = 0, $15m_{\pi}^2$, $20m_{\pi}^2$ and for both charm (left panel) and bottom (right panel) quarks. HQ momentum is taken to be 1 GeV.

Results : $v \parallel B$

• Within strong field limit : $eB(\uparrow) \rightarrow \kappa_L / \kappa_T (\uparrow)$

W.r.t the eB = 0 case, the values for κ_T appear to be significantly reduced by finite magnetic fields.

Results : $v \perp B$

Variation of the scaled charm (left panel) and bottom (right panel) quark momentum diffusion coefficients (for $\mathbf{v} \perp \mathbf{B}$) with *T* for two different values of eB, i.e. $eB = 15m_{\pi}^2$, $20m_{\pi}^2$ for scaled κ_1 (solid lines), κ_2 (dashed lines) and κ_3 (dotted lines). HQ momentum is taken to be 1 GeV.

Results : $v \perp B$

• Within strong field limit : $eB(\uparrow) \rightarrow \kappa_1/\kappa_2/\kappa_3 (\uparrow)$ • κ_2 is almost an order of magnitude lower than κ_1/κ_3 .

• For bottom quarks, $\kappa_3 > \kappa_1$; For charm quarks κ_1 dominates at lower T and κ_3 at higher T (crossover).

Conclusion

- To incorporate the soft gluonic momenta in our evaluation, we have worked with the recently obtained effective HTL gluon propagator in a hot and magnetized medium.
- Applying the static limit ($v \rightarrow 0$) in our general result we have explicitly checked that our result matches with the previous studies within static limit.

• Present beyond the static limit calculation can also be adapted to numerically evaluate the fully anisotropic drag/diffusion coefficients for the HQ velocity in arbitrary direction.

Fukushima, Hattori, Yee, Yin 1512.03689

- Strong eB has considerable influence on diffusion coefficients for eB values accessible in high energy HIC.
- Compared to eB = 0, the values of the coefficients appear to be significantly reduced by finite eB. Such a behaviour may be related to the LLL approximation which reduces the available scattering states of the medium quarks.
- Phenomenologically, this may suggest a suppression of the heavy quark diffusion at the very early stage of the QGP evolution when the magnetic field is very strong.
- With future simulations of heavy quark transport with eB-dependent diffusion coefficients, one could hope for putting constraints on the lifetime of magnetic field in HIC.
- Outlook : Arbitrary LL, Phenomenological implications of our theoretical results.

THANK YOU FOR YOUR ATTENTION.