

What can pionic atoms tell us about the chiral symmetry of the vacuum

Meson Science Laboratory, RIKEN Kenta Itahashi

Nishi, KI et al., arXiv: 2204.05568

Pionic atom unveils hidden structure of QCD vacuum

Takahiro Nishi¹, Kenta Itahashi¹,* DeukSoon Ahn^{1,2}, Georg P.A. Berg³, Masanori Dozono¹,
Daijiro Etoh⁴, Hiroyuki Fujioka⁵, Naoki Fukuda¹, Nobuhisa Fukunishi¹, Hans Geissel⁶, Emma Haettner⁶,
Tadashi Hashimoto¹, Ryugo S. Hayano⁷, Satoru Hirenzaki⁸, Hiroshi Horii⁷, Natsumi Ikeno⁹, Naoto Inabe¹,
Masahiko Iwasaki¹, Daisuke Kameda¹, Keichi Kisamori¹⁰, Yu Kiyokawa¹⁰, Toshiyuki Kubo¹,
Kensuke Kusaka¹, Masafumi Matsushita¹⁰, Shin'ichiro Michimasa¹⁰, Go Mishima⁷, Hiroyuki Miya¹,
Daichi Murai¹, Hideko Nagahiro⁸, Megumi Niikura⁷, Naoko Nose-Togawa¹¹, Shinsuke Ota¹⁰,
Naruhiko Sakamoto¹, Kimiko Sekiguchi⁴, Yuta Shiokawa⁴, Hiroshi Suzuki¹, Ken Suzuki¹², Motonobu Takaki¹⁰,
Hiroyuki Takeda¹, Yoshiki K. Tanaka¹, Tomohiro Uesaka¹, Yasumori Wada⁴, Atomu Watanabe⁴,
Yuni N. Watanabe⁷, Helmut Weick⁶, Hiroki Yamakami⁵, Yoshiyuki Yanagisawa¹, and Koichi Yoshida¹

What can pionic atoms tell us about the <u>chiral symmetry</u>

- Dominant symmetry of the vacuum in low-energy QCD.
- Spontaneous breakdown due to the non-perturbative nature of the strong interaction.
- Non-trivial structure of the QCD vacuum.

Nishi, KI et al., arXiv: 2204.05568

Pionic atom unveils hidden structure of QCD vacuum

Takahiro Nishi¹, Kenta Itahashi¹,* DeukSoon Ahn^{1,2}, Georg P.A. Berg³, Masanori Dozono¹,
Daijiro Etoh⁴, Hiroyuki Fujioka⁵, Naoki Fukuda¹, Nobuhisa Fukunishi¹, Hans Geissel⁶, Emma Haettner⁶,
Tadashi Hashimoto¹, Ryugo S. Hayano⁷, Satoru Hirenzaki⁸, Hiroshi Horii⁷, Natsumi Ikeno⁹, Naoto Inabe¹,
Masahiko Iwasaki¹, Daisuke Kameda¹, Keichi Kisamori¹⁰, Yu Kiyokawa¹⁰, Toshiyuki Kubo¹,
Kensuke Kusaka¹, Masafumi Matsushita¹⁰, Shin'ichiro Michimasa¹⁰, Go Mishima⁷, Hiroyuki Miya¹,
Daichi Murai¹, Hideko Nagahiro⁸, Megumi Niikura⁷, Naoko Nose-Togawa¹¹, Shinsuke Ota¹⁰,
Naruhiko Sakamoto¹, Kimiko Sekiguchi⁴, Yuta Shiokawa⁴, Hiroshi Suzuki¹, Ken Suzuki¹², Motonobu Takaki¹⁰,
Hiroyuki Takeda¹, Yoshiki K. Tanaka¹, Tomohiro Uesaka¹, Yasumori Wada⁴, Atomu Watanabe⁴,
Yuni N. Watanabe⁷, Helmut Weick⁶, Hiroki Yamakami⁵, Yoshiyuki Yanagisawa¹, and Koichi Yoshida¹

Chiral condensate, order parameter of chiral symmetry

Analysis of material properties of QCD vacuum

W.Weise, NPA553(93)59.

Lattice QCD calculated T dependence of chiral condensate

Temperature dependence of the chiral condensate from lattice QCD with 2 + 1 quark flavours and almost physical quark masses

Remark: sign problem makes it difficult for lattice to approach non-zero ρ region

Pionic atoms

Ikeno et al., PTP126 (2011) 483 6

Pion-nucleus interaction

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.6ρ_c π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential $U_{opt}(r) = U_{s}(r) + U_{p}(r),$ $U_{s}(r) = b_{0} \rho + b_{1} (\rho_{n} - \rho_{p}) + B_{0} \rho^{2}$ $U_{p}(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_{2}^{-1} C_{0} \rho^{2}(r)] L(r) \vec{\nabla}$

Pion-nucleus interaction and chiral condensate

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.6ρ_c

π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential

 $U_{\text{opt}}(r) = U_s(r) + U_p(r),$ $U_s(r) = b_0 \rho + b_1 (\rho_n - \rho_p) + B_0 \rho^2$ $U_p(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)] L(r) \vec{\nabla}$

In-medium Glashow-Weinberg relation

γ=0.184±0.003

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

Pion-nucleus interaction and chiral condensate

Overlap between

In-medium Glashow-Weinberg relation

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

Pionic hydrogen and deuterium

 $b_1^v = 0.0882 \pm 0.0014 \pm 0.0006$ Hirtl et al., EPJA57, 70 (2021)

Level shifts in pionic X-ray measurements

Spectroscopy of pionic atoms in (*d*,³He) reactions

Missing mass spectroscopy to measure excitation spectrum of pionic atoms

Spectroscopy of pionic atoms in (*d*,³He) reactions

Missing mass spectroscopy to measure excitation spectrum of pionic atoms

Excitation energy

T_d [MeV]

RI Beam Factory

14

RI Beam Factory

(d,³He) Reaction Spectroscopy in RIBF

Kenta Itahashi, RIKEN

T. Nishi KI et al., PRL120, 152505 (2018)

T. Nishi KI et al., PRL120, 152505 (2018)

T. Nishi KI et al., PRL120, 152505 (2018)

High Precision Spectrum of ¹²²Sn(*d*,³He) in 2014 run

Pionic atom unveils hidden structure of QCD vacuum

Takahiro Nishi¹, Kenta Itahashi¹,* DeukSoon Ahn^{1,2}, Georg P.A. Berg³, Masanori Dozono¹,
Daijiro Etoh⁴, Hiroyuki Fujioka⁵, Naoki Fukuda¹, Nobuhisa Fukunishi¹, Hans Geissel⁶, Emma Haettner⁶,
Tadashi Hashimoto¹, Ryugo S. Hayano⁷, Satoru Hirenzaki⁸, Hiroshi Horii⁷, Natsumi Ikeno⁹, Naoto Inabe¹,
Masahiko Iwasaki¹, Daisuke Kameda¹, Keichi Kisamori¹⁰, Yu Kiyokawa¹⁰, Toshiyuki Kubo¹,
Kensuke Kusaka¹, Masafumi Matsushita¹⁰, Shin'ichiro Michimasa¹⁰, Go Mishima⁷, Hiroyuki Miya¹,
Daichi Murai¹, Hideko Nagahiro⁸, Megumi Niikura⁷, Naoko Nose-Togawa¹¹, Shinsuke Ota¹⁰,
Naruhiko Sakamoto¹, Kimiko Sekiguchi⁴, Yuta Shiokawa⁴, Hiroshi Suzuki¹, Ken Suzuki¹², Motonobu Takaki¹⁰,
Hiroyuki Takeda¹, Yoshiki K. Tanaka¹, Tomohiro Uesaka¹, Yasumori Wada⁴, Atomu Watanabe⁴,
Yuni N. Watanabe⁷, Helmut Weick⁶, Hiroki Yamakami⁵, Yoshiyuki Yanagisawa¹, and Koichi Yoshida¹

arXiv: 2204.05568

High Precision Spectrum of ¹²²Sn(*d*,³He) in 2014 run

Best resolution 287 keV (FWHM)

Under review arXiv: 2204.05568

Deduced b_1 and chiral condensate at ρ_c

+36 - 39

+41 - 32

+28 - 36

 ± 4

 ± 12

 ± 17

 ± 20

316

164

152

 $\Gamma_{\pi}(1s)$

 $\Gamma_{\pi}(2p)$

 $\Gamma_{\pi}(1s) - \Gamma_{\pi}(2p)$

· · · · · · · · · · · · · · · · · · ·	ξ:	short-range	correction,	LLE
---------------------------------------	----	-------------	-------------	-----

- ρ : neutron density distribution
- Abs. : absorption term formulation
- C.S. : cross section calculation method **Res.:** residual interaction

Measured nuclear density distribution of Sn isotopes Sn(p,p') reaction at RCNP, Osaka

Deduced b₁ and chiral condensate at ρ_e

 ± 12

+36 - 39

+41 - 32

+28 - 36

 $B_{\pi}(1s) - B_{\pi}(2p)$

 $\Gamma_{\pi}(1s)$

 $\Gamma_{\pi}(2p)$

 $\Gamma_{\pi}(1s) - \Gamma_{\pi}(2p)$

1555

316

164

152

 ± 4

 ± 12

 ± 17

 ± 20

 ξ : short-range correction, LLE

 ρ : neutron density distribution

Abs. : absorption term formulation

C.S. : cross section calculation method Res.: residual interaction

Deduced b₁ and chiral condensate at ρ_e

25

ρ dependence of chiral condensate

Summary

- Chiral condensate at the normal nuclear density is evaluated to be reduced by 58±4%.
 We evaluated chiral condensate with errors at the well-defined density for the first time by pionic atom spectroscopy.
- The binding energies and widths of the 1s and 2p states in Sn121 were determined with unprecedented precision. Difference between the 1s and 2p values reduces the systematic errors drastically.
- Recent theoretical progress was adopted for the evaluation, which directly relates the chiral condensate and the pion-nucleus interaction.
- We calculated various corrections for the first time and applied them. The application
 made a huge jump of the deduced chiral condensate. After the "blind-analysis" of the
 correction, the chiral condensate ratio was deduced to be 58±4% with much higher
 reliability.
- We plan measurement of ρ dependence of chiral condensate in systematic study.